

Classical and exotic spectroscopy at LHCb

Elisabeth Niel on behalf of the LHCb Collaboration

École Polytechnique Fédérale de Lausanne - EPFL Les Rencontres de Physique de la Vallée d'Aoste La Thuile - Italy 5 – 11 March 2023

Mont Blanc from my home

Introduction

Classical hadrons \rightarrow mesons [quark + antiquark] or baryons [3 quarks]

Exotic hadrons \rightarrow in principle, anything else : Glueballs, hybrids, tetraquarks, pentaquarks, hexaquarks

Studied by different experiments:

LHCb, BESIII, ATLAS, CMS, Belle, Belle II, BaBar, CDF, D0, ALICE ...

Introduction

Classical hadrons \rightarrow mesons [quark + antiquark] or baryons [3 quarks]

Exotic hadrons \rightarrow in principle, anything else : Glueballs, hybrids, tetraquarks, pentaquarks, hexaquarks

Studied by different experiments:

LHCb, BESIII, ATLAS, CMS, Belle, Belle II, BaBar, CDF, D0, ALICE ...

Today: a selection of recent LHCb results

Last year LHCb talk – La Thuile 2022

Overview

Selection of recent LHCb results on classical and exotic spectroscopy

Conventional hadrons

- $\Lambda_c^+ \rightarrow p K^- \pi^+$ amplitude analysis & Λ_c^+ polarisation measurement (**NEW!**)
- Observation of new excited Ξ_b^0 states in $\Lambda_b^0 K^- \pi^+$
- Observation of excited Ω_c^0 baryons in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decays
- Study of charmonium contributions in $B^+ \rightarrow J/\psi \, \eta K^+$

Exotics

- χ_{c1} (3872) production in *pp* collisions at $\sqrt{s} = 8, 13 \text{ TeV}$
- Observation of exotic tetraquark T_{cc}^+ in $D^0 D^0 \pi^+$
- Evidence of new pentaquark structure in $B_s^0 \rightarrow p\bar{p}J/\psi$ decays

Last year LHCb talk – La Thuile 2022

Overview

Selection of recent LHCb results on classical and exotic spectroscopy

Conventional hadrons

- $\Lambda_c^+ \rightarrow p K^- \pi^+$ amplitude analysis & $\Lambda_c^+ \leftarrow$ polarisation measurement (**NEW**!)
- Observation of new excited Ξ_b^0 states in $\Lambda_b^0 K^- \pi^+$
- Observation of excited Ω_c^0 baryons in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decays
- Study of charmonium contributions in $B^+ \rightarrow J/\psi \, \eta K^+$

Conventional hadrons for today

 $\succ \Lambda_c^+ \rightarrow p K^- \pi^+$ polarimetry

$$\succ D_s^+ \to \pi^+ \pi^- \pi^+$$

$$\succ D^+ \rightarrow \pi^+ \pi^- \pi^+$$

- Observation of new Ω_c^0 states decaying into $\Xi_c^+ K^-$
- ➢ Observation of \mathcal{Z}_{cc}^{++} → $\mathcal{Z}_{c}^{\prime+}\pi^{+}$ [talk by Gabriele Martelli]

Last year LHCb talk – La Thuile 2022

Overview

Exotics for today

- > Observation of the $B_s^0 \rightarrow (\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-)\pi^+\pi^- \text{ decay}$
- > $B^0 \rightarrow J/\psi \phi K_S^0$ new state : $T^{\theta}_{\psi s1}(4000)^0$ and $T_{\psi s1}(4220)^0$
- New doubly charged and neutral open charmed tetraquarks observed in
 B⁰ → D
 ⁰D⁺_sπ⁻ and B⁺ → D⁻D⁺_sπ⁺
 New state from the amplitude analysis of
- ➢ New state from the amplitude analysis of $B^+ → D_s^+ D_s^- K^+$

> Strange pentaquark candidate in $B^- \rightarrow J/\psi \Lambda \, \overline{p}$

al and exotic spectroscopy

Exotics

- χ_{c1} (3872) production in *pp* collisions at $\sqrt{s} = 8, 13 \text{ TeV}$
- Observation of exotic tetraquark T_{cc}^+ in $D^0 D^0 \pi^+$
- Evidence of new pentaquark structure in $B_s^0 \rightarrow p\bar{p}J/\psi$ decays

The LHCb experiment

[IJMPA 30 (2015) 1530022] [JINST 3 (2008) S08005]

Single arm forward spectrometer with excellent vertexing, tracking, PID

Conventional spectroscopy at LHCb

heavy baryons:

- $\Omega_c^0 \to \Xi_c^+ K^-$
- doubly heavy baryons
 - Observation of $\Xi_{cc}^{++} \to \Xi_{c}^{\prime+}\pi^+$
- > amplitude structures of charm hadron decays
 - $D_s^+ \to \pi^+ \pi^- \pi^+$
 - $D^+ \rightarrow \pi^+ \pi^- \pi^+$
 - $\Lambda_c^+ \to p K^- \pi^+$ polarimetry
 - Observation of the $B_s^0 \rightarrow (\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-)\pi^+\pi^-$ decay

- > Single charmed baryons: one charm quark + 2 lighter quarks \rightarrow large mass difference
- > Described by heavy quark effective theory HQET but masses and quantum numbers diverges among different theories, some examples:
 - o lattice quantum chromodynamics predicts invariant-mass spectrum with D or F-wave excited states PRL 119, 042001
 - baryon-meson molecular (quasi-bound) states interpretation for $\Omega_c^0(3050)$ and $\Omega_c^0(3090)$ PRD 97 (2018) 094035, EPJ. A54 (2018) 64, Few Body Syst. 61 (2020) 34
 - o interpretation as pentaquark states PRD96 (2017) 034012 and Communications in Theoretical Physics 73 (2021) 035201.
- Measurement of BR would help to discriminate internal structure (molecular, pentaquarks,...)

- > Single charmed baryons: one charm quark + 2 lighter quarks \rightarrow large mass difference
- > Described by heavy quark effective theory HQET but masses and quantum numbers diverges among different theories, some examples:
 - o lattice quantum chromodynamics predicts invariant-mass spectrum with D or F-wave excited states PRL 119, 042001
 - baryon-meson molecular (quasi-bound) states interpretation for $\Omega_c^0(3050)$ and $\Omega_c^0(3090)$ PRD 97 (2018) 094035, EPJ. A54 (2018) 64, Few Body Syst. 61 (2020) 34
 - o interpretation as pentaquark states PRD96 (2017) 034012 and Communications in Theoretical Physics 73 (2021) 035201.
- Measurement of BR would help to discriminate internal structure (molecular, pentaquarks,...)
- > NEW update of PRL 118 (2017) 182001 \rightarrow 5 times larger data sample

Previous LHCb measurement

Resonance	Mass (MeV)	Γ (MeV)
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1 \substack{+0.3 \\ -0.5}$	$0.8\pm0.2\pm0.1$
	0.5	<1.2 MeV, 95% C.L.
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$
	-0.5	<2.6 MeV, 95% C.L.
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60\pm15\pm11$
$\Omega_{c}(3066)^{0}_{fd}$		
$\Omega_{c}(3090)_{fd}^{0}$		
$\Omega_{0}(3119)^{0}$		

- > Single charmed baryons: one charm quark + 2 lighter quarks \rightarrow large mass difference
- > Described by heavy quark effective theory HQET but masses and quantum numbers diverges among different theories, some examples:
 - o lattice quantum chromodynamics predicts invariant-mass spectrum with D or F-wave excited states PRL 119, 042001
 - baryon-meson molecular (quasi-bound) states interpretation for $\Omega_c^0(3050)$ and $\Omega_c^0(3090)$ PRD 97 (2018) 094035, EPJ. A54 (2018) 64, Few Body Syst. 61 (2020) 34
 - o interpretation as pentaquark states PRD96 (2017) 034012 and Communications in Theoretical Physics 73 (2021) 035201.
- Measurement of BR would help to discriminate internal structure (molecular, pentaquarks,...)
- > NEW update of PRL 118 (2017) 182001 \rightarrow 5 times larger data sample
- ≻ Production from $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ also studied by LHCb <u>Phys. Rev. D 104, L091102</u>

Resonance	Mass (MeV)	Γ (MeV)
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1 \substack{+0.3 \\ -0.5}$	$0.8\pm0.2\pm0.1$
,	-0.5	<1.2 MeV, 95% C.I
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5 ^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$
	0.0	<2.6 MeV, 95% C.I
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60\pm15\pm11$
$\Omega_{c}(3066)^{0}_{fd}$		
$\Omega_c(3090)_{\rm fd}^{0}$		
$\Omega_{c}(3119)^{0}_{fd}$		

> Two new excited states $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$

≻ Five states from previous analysis confirmed → masses and widths measured with highest precision to date

- > Two new excited states $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$
- ➢ Five states from previous analysis confirmed → masses and widths measured with highest precision to date

Partially reconstructed decays with photons determined from simulation (yields vary in the fit)

- > Fit at threshold enanchement with BW with or w/o feed down $\Omega_c(3065)^0$, not possible to separate two states but the existence of another hidden state cannot be excluded.
- $\geq \Omega_c(3185)^0$ could be also described by two states

$\Omega_c(3000)$	$())^0 \rightarrow \Xi_c^+ K^-$	$\Omega_c(3065)^0 \to \Xi_c^{+}(\to \Xi_c^+ \gamma) K^-$
$\ldots \Omega_c(3050)$	$(0)^0 \rightarrow \Xi_c^+ K^-$	$\Omega_c(3090)^0 \to \Xi_c^{+}(\to \Xi_c^+ \gamma) K^-$
$\Omega_c(3065)$	$(5)^0 \rightarrow \Xi_c^+ K^-$	$\Omega_c(3119)^0 \to \Xi_c^{+}(\to \Xi_c^+ \gamma) K^-$
$\Omega_{c}(3090)$	$\tilde{D}^{0} \rightarrow \Xi^{+} K^{-}$	$\Omega_c(3185)^0 \to \Xi_c^+ K^-$
$\Omega_{c}(3119)$	$\tilde{D}^{0} \rightarrow \Xi^{+} K^{-}$	$\Omega_c(3327)^0 \rightarrow \Xi_c^+ K^-$
	,	
Resonance	$m \; ({ m MeV})$	$\Gamma ~({ m MeV})$
$\Omega_c(3000)^0$	$3000.44 \pm 0.07 \ ^{+0.07}_{-0.13} \pm 0.23$	$3.83 \pm 0.23 \stackrel{+1.59}{_{-0.29}}$
$\Omega_c(3050)^0$	$3050.18 \pm 0.04 {}^{+0.06}_{-0.07} \pm 0.23$	$0.67 \pm 0.17 \ \substack{+0.64 \\ -0.72}$
		$< 1.8\mathrm{MeV}, 95\%$ C.L.
$\Omega_c(3065)^0$	$3065.63 \pm 0.06 {}^{+0.06}_{-0.06} \pm 0.23$	$3.79 \pm 0.20 {}^{+0.38}_{-0.47}$
$\Omega_c(3090)^0$	$3090.16 \pm 0.11 {}^{+0.06}_{-0.10} \pm 0.23$	$8.48 \pm 0.44 {}^{+0.61}_{-1.62}$
$\Omega_c(3119)^0$	$3118.98 \pm 0.12 {}^{+0.09}_{-0.23} \pm 0.23$	$0.60 \pm 0.63 \ ^{+0.90}_{-1.05}$
		$< 2.5 \mathrm{MeV}, 95\%$ C.L.
$\Omega_c(3185)^0$	$3185.1 \pm 1.7 \stackrel{+1.4}{-0.9} \pm 0.2$	$50 \pm 7 \begin{array}{c} +10 \\ -20 \end{array}$
$\Omega_{c}(3327)^{0}$	$3327.1 \pm 1.2 {}^{+0.1}_{-1.3} \pm 0.2$	$20 \pm 5 \begin{array}{c} +13 \\ -1 \end{array}$

Amplitude analysis $D^+(D_s^+) \rightarrow \pi^+\pi^-\pi^+$

- Spectroscopy of scalar states, test glueballs interpretation J. Phys. G: Nucl. Part. Phys. 40 043001
- > 2012 data, $\mathcal{L} = 0.75$ fb⁻¹. Promptly produced D mesons: $N(D^+) \sim 600k$ and $N(D_s^+) \sim 700k$
- > Amplitude description: S-wave with Quasi-Model Independent approach (QMIPWA) and isobar model for spin-1, spin-2 components

$$\mathcal{A}_{S}(s_{12}, s_{13}) = \mathcal{A}_{S}(s_{12}) + \mathcal{A}_{S}(s_{13}) \qquad \qquad \mathcal{A}_{S}^{k}(s_{\pi^{+}\pi^{-}}) = c_{k}e^{i\phi_{k}}$$

 c_k, ϕ_k : Generic functions determined by fit to data

Component	Magnitude	Phase [°]		Fit fra	action [%	6]
$\rho(770)^0\pi^+$	1 [fixed]	0 [fixed]	26.0	± 0.3	± 1.6	± 0.3
$\omega(782)\pi^+$	$(1.68 \pm 0.06 \pm 0.15 \pm 0.02) \times 10^{-2}$	$-103.3 \pm 2.1 \pm 2.6 \pm 0.4$	0.103	3 ± 0.003	8 ± 0.014	4 ± 0.002
$ ho(1450)^0\pi^+$	$2.66 \pm 0.07 \pm 0.24 \pm 0.22$	$47.0 \pm 1.5 \pm 5.5 \pm 4.1$	5.4	± 0.4	± 1.3	± 0.8
$ ho(1700)^0\pi^+$	$7.41 \pm 0.18 \pm 0.47 \pm 0.71$	$-65.7 \pm 1.5 \pm 3.8 \pm 4.6$	5.7	± 0.5	± 1.0	± 1.0
$f_2(1270)\pi^+$	$2.16 \pm 0.02 \pm 0.10 \pm 0.02$	$-100.9 \pm 0.7 \pm 2.0 \pm 0.4$	13.8	+0.2	+0.4	+ 0.2
S-wave			61.8	± 0.5	± 0.6	± 0.5
$\sum_{i} FF_{i}$				1	12.8	
χ^2/ndof (range)	[1.47 - 1.78]			$-2\log L$	$\mathcal{C} = 8056$	522

Dominated by S-wave, followed by $\rho(770)^0\pi^+$ and $f_2(1270)^0\pi^+$ Contribution from $(\omega(782) \rightarrow \pi^+\pi^-)\pi^+$ observed for the first time

Amplitude analysis $D^+(D_s^+) \rightarrow \pi^+\pi^-\pi^+$

- Spectroscopy of scalar states, test glueballs interpretation J. Phys. G: Nucl. Part. Phys. 40 043001
- > 2012 data, $\mathcal{L} = 1.5 \text{ fb}^{-1}$. Promptly produced *D* mesons: $N(D^+) \sim 600k$ and $N(D_s^+) \sim 700k$
- Amplitude description: S-wave with Quasi-Model Independent approach (QMIPWA) and isobar model for spin-1, spin-2 components

$$\mathcal{A}_{S}\left(s_{12}, s_{13}\right) = \mathcal{A}_{S}\left(s_{12}\right) + \mathcal{A}_{S}\left(s_{13}\right) \qquad \mathcal{A}_{S}^{k}\left(s_{\pi^{+}\pi^{-}}\right) = c_{k}e^{i\phi_{k}}$$

 c_k, ϕ_k : Generic functions determined by fit to data

Resonance	Magnitude	Phase $[^{\circ}]$	Fit fraction (FF) $[\%]$
S-wave			84.97 ± 0.14
$ ho(770)^{0}$	0.1201 ± 0.0030	79.4 ± 1.8	1.038 ± 0.054
$\omega(782)$	0.04001 ± 0.00090	-109.9 ± 1.7	0.360 ± 0.016
$ ho(1450)^{0}$	1.277 ± 0.026	-115.2 ± 2.6	3.86 ± 0.15
$ ho(1700)^{0}$	0.873 ± 0.061	-60.9 ± 6.1	0.365 ± 0.050
combined	-	_	6.14 ± 0.27
$f_2(1270)$	1 (fixed)	0 (fixed)	13.69 ± 0.14
$f'_2(1525)$	0.1098 ± 0.0069	178.1 ± 4.2	0.0455 ± 0.0070
sum of fit fractions			104.3
χ^2/ndof (range)	[1.45 - 1.57]		

Dominated by S-wave, followed by spin-2 resonances Contribution from $(\omega(782) \rightarrow \pi^+\pi^-)\pi^+$ observed for the first time

 $D_s^+ \rightarrow \pi^- \pi^+ \pi^+$

$\Lambda_c^+ \rightarrow p K^- \pi^+$ polarimetry

- > Polarization measurement: insights on quark hadronisation mechanism, hadron spectroscopy, BSM searches in $\Lambda_b \rightarrow \Lambda_c l^- \nu$ and with the measurement of EDM and MDM of charm baryons.
- $\geq \text{Recent LHCb } \Lambda_c^+ \text{ polarization measurement in } \Lambda_c^+ \rightarrow p \ K^- \pi^+ \text{ semileptonic decays and amplitude analysis:} \\ 6 \ \Lambda^*, 3 \ \Delta^{*++} \text{ states, and } 3 \ K^{*0} \text{ states} \qquad \underbrace{\text{arXiv:} 2208.03262}_{\text{arXiv:} 2208.03262}$
- \triangleright Decay paremetrization is model dependent \rightarrow new method to express the polarized decay rate in model agnostic way

Reduction of uncertainties on polarization measurement!

$\Lambda_c^+ \rightarrow p K^- \pi^+$ polarimetry

- > Polarization measurement: insights on quark hadronisation mechanism, hadron spectroscopy, BSM searches in $\Lambda_b \rightarrow \Lambda_c l^- \nu$ and with the measurement of EDM and MDM of charm baryons.
- $\geq \text{Recent LHCb } \Lambda_c^+ \text{ polarization measurement in } \Lambda_c^+ \rightarrow p \ K^- \pi^+ \text{ semileptonic decays and amplitude analysis:} \\ 6 \ \Lambda^*, 3 \ \Delta^{*++} \text{ states, and } 3 \ K^{*0} \text{ states} \qquad \underbrace{\text{arXiv:} 2208.03262}_{\text{arXiv:} 2208.03262}$
- \triangleright Decay paremetrization is model dependent \rightarrow new method to express the polarized decay rate in model agnostic way

Reduction of uncertainties on polarization measurement!

unpolarized intensity aligned polarimeter vector

$$|\mathcal{M}(\phi,\theta,\chi,\kappa)|^{2} = I_{0}(\kappa) \left(1 + \sum_{i,j} P_{i}R_{ij}(\phi,\theta,\chi)\alpha_{j}(\kappa)\right)$$

> $\alpha_j(\tau)$ can be computed for any model and represented as an arrow over the x-z plane, where κ denotes the kinematic variables

$\Lambda_c^+ \rightarrow p K^- \pi^+$ polarimetry

- > Polarization measurement: insights on quark hadronisation mechanism, hadron spectroscopy, BSM searches in $\Lambda_b \rightarrow \Lambda_c l^- \nu$ and with the measurement of EDM and MDM of charm baryons.
- $\geq \text{Recent LHCb } \Lambda_c^+ \text{ polarization measurement in } \Lambda_c^+ \rightarrow p \ K^- \pi^+ \text{ semileptonic decays and amplitude analysis:} \\ 6 \ \Lambda^*, 3 \ \Delta^{*++} \text{ states, and } 3 \ K^{*0} \text{ states} \qquad \text{arXiv:} 2208.03262$

 \triangleright Decay paremetrization is model dependent \rightarrow new method to express the polarized decay rate in model agnostic way

Reduction of uncertainties on polarization measurement!

unpolarized intensity aligned polarimeter vector

$$|\mathcal{M}(\phi,\theta,\chi,\kappa)|^{2} = I_{0}(\kappa) \left(1 + \sum_{i,j} P_{i}R_{ij}(\phi,\theta,\chi)\alpha_{j}(\kappa)\right)$$

- > $\alpha_j(\tau)$ can be computed for any model and represented as an arrow over the x-z plane, where κ denotes the kinematic variables
 - Length of polarization vector = color axis, > 0.5 over the Dalitz → significant contribution of both parity conserving and violating currents!
 - > Averaged on angles \rightarrow worse uncertainty on P_i
 - Code available at <u>https://lc2pkpi-polarimetry.docs.cern.ch</u>

Observation of the
$$B_s^0 \rightarrow (\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-)\pi^+\pi^- \text{decay}$$
 19

arXiv:2302.02127

- Puzzling difference between the branching fractions $B^+ \to \chi_{c1}(3872)K^+$ and $B^0 \to \chi_{c1}(3872)K^0$
- Compact-tetraquark interpretation explaining also similar BR $B_s^0 \rightarrow \chi_{c1}(3872)\phi$ and $B^0 \rightarrow \chi_{c1}(3872)K^0$ Phys. Rev. D102 (2020) 034017
- The ratio of branching fractions measured:

$$\frac{\mathcal{B}\left(\mathrm{B}^{0}_{\mathrm{s}} \rightarrow \chi_{\mathrm{c1}}(3872)\pi^{+}\pi^{-}\right) \times \mathcal{B}\left(\chi_{\mathrm{c1}}(3872) \rightarrow \mathrm{J/\psi}\pi^{+}\pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}^{0}_{\mathrm{s}} \rightarrow \psi(2\mathrm{S})\pi^{+}\pi^{-}\right) \times \mathcal{B}\left(\psi(2\mathrm{S}) \rightarrow \mathrm{J/\psi}\pi^{+}\pi^{-}\right)} = (6.8 \pm 1.1 \pm 0.2) \times 10^{-2}$$

Observation of the
$$B_s^0 \rightarrow (\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-) \pi^+ \pi^- \text{ decay}$$
 20

arXiv:2302.02127

- Puzzling difference between the branching fractions $B^+ \to \chi_{c1}(3872)K^+$ and $B^0 \to \chi_{c1}(3872)K^0$
- Compact-tetraquark interpretation explaining also similar BR $B_s^0 \rightarrow \chi_{c1}(3872)\phi$ and $B^0 \rightarrow \chi_{c1}(3872)K^0$ Phys. Rev. D102 (2020) 034017
- The ratio of branching fractions measured:

$$\frac{\mathcal{B}\left(\mathrm{B}^{0}_{\mathrm{s}} \rightarrow \chi_{\mathrm{c1}}(3872)\pi^{+}\pi^{-}\right) \times \mathcal{B}\left(\chi_{\mathrm{c1}}(3872) \rightarrow \mathrm{J/\psi}\pi^{+}\pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}^{0}_{\mathrm{s}} \rightarrow \psi(2\mathrm{S})\pi^{+}\pi^{-}\right) \times \mathcal{B}\left(\psi(2\mathrm{S}) \rightarrow \mathrm{J/\psi}\pi^{+}\pi^{-}\right)} = (6.8 \pm 1.1 \pm 0.2) \times 10^{-2}$$

• The signal yields two-dimensional extended unbinned maximum-likelihood fit to the $J/\psi \pi^+ \pi^- \pi^-$ and $J/\psi \pi^+ \pi^+$ mass distributions

Observation of the $B_s^0 \rightarrow (\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-)\pi^+\pi^-$ decay 21

- Puzzling difference between the branching fractions $B^+ \to \chi_{c1}(3872)K^+$ and $B^0 \to \chi_{c1}(3872)K^0$
- Compact-tetraquark interpretation explaining also similar BR $B_s^0 \rightarrow \chi_{c1}(3872)\phi$ and $B^0 \rightarrow \chi_{c1}(3872)K^0$
- The ratio of branching fractions measured:

$$\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \chi_{\mathrm{c1}}(3872)\pi^{+}\pi^{-}\right) \times \mathcal{B}\left(\chi_{\mathrm{c1}}(3872) \rightarrow \mathrm{J/\psi}\pi^{+}\pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \psi(2\mathrm{S})\pi^{+}\pi^{-}\right) \times \mathcal{B}\left(\psi(2\mathrm{S}) \rightarrow \mathrm{J/\psi}\pi^{+}\pi^{-}\right)} = (6.8 \pm 1.1 \pm 0.2) \times 10^{-2}$$

• The signal yields two-dimensional extended unbinned maximum-likelihood fit to the $J/\psi \pi^+ \pi^- \pi^-$ and $J/\psi \pi^+ \pi^+$ mass distributions

Fit components:

- 1. Signal template $B_s^0 \rightarrow (\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-) \pi^+ \pi^-)$
- 2. J/ $\psi \pi \pi$ combination does not originate from a $\chi_{c1}(3872)$ meson (no interference with first accounted for)
- 3. Random combinations of the $\chi_{c1}(3872)$ state with a $\pi + \pi \text{pair}$,
- 4. Polynomial background

```
\mbox{Parameter} \qquad B^0_s \rightarrow \chi_{c1}(3872) \pi^+\pi^- \quad B^0_s \rightarrow \psi(2S) \pi^+\pi
```

Ν	155 ± 23	1301 ± 47
$m_{\chi_{-1}(3872)} [\text{MeV}/c^2]$	3871.57 ± 0.09	
$m_{\psi(2S)}$ [MeV/ c^2]	_	$3686.08 \pm 0.0'$
$m_{B_0^0}$ [MeV/ c^2]	5366.9	97 ± 0.23
$s_{B_s^0}$	1.(06 ± 0.03
$s_{J/\psi\pi^+\pi^-}$	1.1	2 ± 0.03

 $\mathcal{B}\left(\mathrm{B_{s}^{0}}
ightarrow\chi_{c1}(3872)\pi^{+}\pi^{-}
ight)$

 $imes \mathcal{B} \left(\chi_{c1}(3872)
ightarrow {
m J}/\!\psi \pi^+ \pi^-
ight) = (1.6 \pm 0.3 \pm 0.1 \pm 0.3) imes 10^{-6} \, ,$

arXiv:2302.02127

Phys. Rev. D102 (2020) 034017 $3.85 < m_{{\rm J}/\psi\pi^+\pi^-} < 3.90\,{\rm GeV}/c^2$

arXiv:2302.10629

Using PDG input for $\mathcal{B}(B^0_s \to \psi(2S)\pi^+\pi^-) \times \mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)$

Observation of the $B_s^0 \rightarrow \chi_{c1}(3872)\pi^+\pi^-$ decay

- > Mass spectra ($\pi^+\pi^-$) system recoiling against the $\chi_{c1}(3872)$ and $\psi(2S)$ states obtained using the *sPlot technique* from mass fits
- From $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ analysis $f_0(980)$ and $f_0(1500)$ contributions dominant confirmed Phys. Rev. D89 (2014) 092006
- > Describe the spectra with coherent sum of scalar $f_0(980)$ and $f_0(1500)$ + non resonant component

$$F(m) \propto n q p^{3} \left[f \mathcal{A}_{f_{0}(980)}(m) + e^{i\varphi} \mathcal{A}_{f_{0}(1500)}(m) \right]^{2}$$
Phase space

- ➢ Fit parameter shared in the simultaneous fit
- → Di-pion mass spectrum from $B_s^0 \rightarrow \psi(2S)\pi^+\pi^-$ decays decribed → see dominant contribution of 2 S-wave resonances
- ► Large component $B_s^0 \rightarrow \chi_{c1}(3872) f_0(980)$ with significance exceeding 7 standard deviations.

Exotic Spectroscopy at LHCb

Tetraquarks

- $B^+ \rightarrow J/\psi \phi K^+$ two states : $T^{\theta}_{\psi s1}(4000)^+$ and $T_{\psi s1}(4220)^0$
- New doubly charged and neutral open charmed tetraquarks observed in $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$
- New state from the amplitude analysis of $B^+ \rightarrow D_s^+ D_s^- K^+$

> Pentaquarks

• Strange pentaquark candidate in $B^- \rightarrow J/\psi \Lambda \bar{p}$

LHCb naming scheme

We proposed a new exotic hadron naming convention arXiv:2206.15233v1

- *T* for tetraquark
- *P* for pentaquark
- **superscript**: based on existing symbols, to indicate isospin, parity and G-parity
- **subscript**: heavy quark content

2	T states			T s	tates	
zero net S, C, B		n	non-zero net S, C, B			
(P,G)	I = 0	I = 1	(P)	I = 0	$I = \frac{1}{2}$	I = 1
(-,-)	ω	π	(-)	η	au	π
(-,+)	η	ho	(+)	f	θ	a
(+, +)	f	b				
(+, -)	h	a				

P states

I = 0	$I = \frac{1}{2}$	I = 1	$I = \frac{3}{2}$
Λ	N^{-}	$\boldsymbol{\Sigma}$	Δ^{-}

Minimal quark content	Current name	$I^{(G)}, J^{P(C)}$	Proposed name	Reference
	$\chi_{c1}(3872)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(3872)$	[24, 25]
$car{c}uar{d}$	$Z_c(3900)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\psi 1}(3900)^+$	[26-28]
$car{c}uar{d}$	$X(4100)^+$	$I^{G} = 1^{-}$	$T_\psi(4100)^+$	[29]
$car{c}uar{d}$	$Z_c(4430)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^{b}_{\psi 1}(4430)^{+}$	[30, 31]
$car{c}(sar{s})$	$\chi_{c1}(4140)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}^{-1}(4140)$	[32 - 35]
$car{c}uar{s}$	$Z_{cs}(4000)^+$	$I=rac{1}{2},\ J^P=1^+$	$T^{ heta}_{\psi s1}(4000)^+$	[7]
$car{c}uar{s}$	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, \ J^P = 1^?$	$T_{\psi s1}(4220)^+$	[7]
$c\bar{c}c\bar{c}$	X(6900)	$I^G = \bar{0^+}, \ J^{PC} = ?^{?+}$	$T_{\psi\psi}(6900)$	[4]
$csar{u}ar{d}$	$X_0(2900)$	$J^P = 0^+$	$T_{cs0}(2900)^0$	[5,6]
$csar{u}ar{d}$	$X_1(2900)$	$J^{P} = 1^{-}$	$T_{cs1}(2900)^0$	[5,6]
$ccar{u}ar{d}$	$T_{cc}(3875)^+$		$T_{cc}(3875)^+$	[8,9]
$bar{b}uar{d}$	$Z_b(10610)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\Upsilon 1}(10610)^+$	[36]
$car{c}uud$	$P_c(4312)^+$	$I = \frac{1}{2}$	$P_{\psi}^{N}(4312)^{+}$	[3]
$c\bar{c}uds$	$P_{cs}(4459)^0$	$I = \tilde{0}$	$P_{\psi s}^{^{ au}}(4459)^0$	[20]

Evidence of $T_{\psi s1}^{\theta}$ (4000)⁰ state

Previously $B^+ \to J/\psi \phi K^+$ we observed two states : $T^{\theta}_{\psi s1}(4000)^+$ and $T_{\psi s1}(4220)^+$ Phys. Rev. Lett. 127, 082001 Here we looked for the isospin partner decay, is there a $T^{\theta}_{\psi s1}(4000)^0$ isospin partner in $B^0 \to J/\psi \phi K^0_S$?

Evidence of $T_{\psi s1}^{\theta}(4000)^{0}$ state

Previously $B^+ \to J/\psi \phi K^+$ we observed two states : $T^{\theta}_{\psi s1}(4000)^+$ and $T_{\psi s1}(4220)^+$ Phys. Rev. Lett. 127, 082001 Here we looked for the isospin partner decay, is there a $T^{\theta}_{\psi s1}(4000)^0$ isospin partner in $B^0 \to J/\psi \phi K_S^0$?

Similar analysis: reconstruct pairs of muons, kaons and pions (+ require long flight distance on the K_S^0)

A simultaneous fit on the two modes is performed.

Evidence of $T_{\psi s1}^{\theta}$ (4000)⁰ state

Previously $B^+ \to J/\psi \phi K^+$ we observed two states : $T^{\theta}_{\psi s1}(4000)^+$ and $T_{\psi s1}(4220)^+$ Phys. Rev. Lett. 127, 082001 Here we looked for the isospin partner decay, is there a $T^{\theta}_{\psi s1}(4000)^0$ isospin partner in $B^0 \to J/\psi \phi K^0_S$?

Similar analysis: reconstruct pairs of muons, kaons and pions (+ require long flight distance on the K_S^0)

A simultaneous fit on the two modes is performed.

Default model:

 $\succ K^* \text{ resonances in } (\phi K_S^0) : 9 \text{ in total}$ $\succ X (\chi_{c 0,1}, \eta_c \text{ or } T_{\psi \phi 1}^{\eta}) \text{ in } (J/\psi \phi) : 7 \text{ in total}$ $\succ T_{\psi s 1}^{\theta} \text{ in } (J/\psi K_S^0)$

Assumption of isospin symmetry \rightarrow mass, width and helicity couplings for all the components except $T_{\psi s1}^{\theta}(4000)^{0}$ constraint to be identical.

$T_{\psi s1}(4220)^0$ constraints to be identical to $T_{\psi s1}(4220)^+$ due to limited size of B^0 sample

Evidence of $T_{\psi s1}^{\theta}$ (4000)⁰ state

> Difference in mass with $T_{\psi s1}^{\theta}(4000)^+$ is small \rightarrow confirm the isospin partnership $\Delta M = -12 \frac{+11}{-10} \frac{+6}{-4} \text{ MeV}$

Significance computed with likelihood ratio method with :

 $t \equiv -2\ln[\mathcal{L}(H_0)/\mathcal{L}(H_1)]$ $H_{0,1}$: default model without or with the new state

> Significance is : 4 σ , goes up to 5.4 σ assuming isospin symmetry for the $T_{\psi s1}^{\theta}(4000)$ states

Doubly charged tetraquark

 \succ New doubly charged and neutral open charmed tetraquarks observed in $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \rightarrow D^- D_s^+ \pi^+$ arXiv:2212.02717v1

▷ Predicted by diquark-antiquark model from X(2900) in $B \rightarrow DD^+K^-$

Name	Decay	Content
$T^{a}_{c\bar{s}0}(2900)^{0}$	$B^0 \to \overline{D}{}^0 D_s^+ \pi^-$	csūd
$T^a_{c\bar{s}0}(2900)^{++}$	$B^+ \rightarrow D^- D_s^+ \pi^+$	csūud

Model:

- > Only expect $\overline{D^*}$ resonances
- > Spin parity of $\overline{D}(3000)^0$ determined : 4⁺
- \triangleright $\overline{D}\pi$ S-wave with quasi Model Independent splines

Expected resonant content

Resonance	J^P	Mass (GeV)	Width (GeV)	Comments
$\overline{D}^*(2007)^0$	1^{-}	2.00685 ± 0.00005	$< 2.1 imes 10^{-3}$	Width set to be $0.1\mathrm{MeV}$
$D^{*}(2010)^{-}$	1^{-}	2.01026 ± 0.00005	$(8.34 \pm 0.18) imes 10^{-5}$	
$\overline{D}_0^*(2300)$	0^+	2.343 ± 0.010	0.229 ± 0.016	#
$\overline{D}_{2}^{*}(2460)$	2^{+}	2.4611 ± 0.0007	0.0473 ± 0.0008	#
$\overline{D}_{1}^{*}(2600)^{0}$	1^{-}	2.627 ± 0.010	0.141 ± 0.023	#
$\overline{D}_3^*(2750)$	3^{-}	2.7631 ± 0.0032	0.066 ± 0.005	#
$\overline{D}_{1}^{*}(2760)^{0}$	1^{-}	2.781 ± 0.022	0.177 ± 0.040	#
$\overline{D}_{J}^{*}(3000)^{0}$	$?^{?}$	3.214 ± 0.060	0.186 ± 0.080	# $J^P = 4^+$ is assumed

Doubly charged tetraquark

 $B^+ \rightarrow D^- D_s^+ \pi^+$

Simultaneous fit of both channels with isospin relation between two states enforced \rightarrow Model with $T^a_{c\bar{s}0}(2900)^0$ and $T^a_{c\bar{s}0}(2900)^{++}$ preffered

 \blacktriangleright Fit with only D* resonances any spin combinations discarded, fit with different masses for the two states compatible results

3.2 2.2 2.4 2.6 2.8 3.0 2.6 2.8 3.0 3.2 3.4 2.2 2.4 $M(D_s^+\pi^+)$ (GeV) B^0 Fraction (%) Particle Amplitude Phase B^+ Fraction (%) $T^{a}_{c\bar{s}0}(2900)$ $0.149 \pm 0.031 \pm 0.031$ $-1.26 \pm 0.22 \pm 0.35$ $2.55 \pm 0.64 \pm 0.83$ $2.45 \pm 0.65 \pm 0.84$ $D^*(2007)^0$ $2.58 \pm 0.11 \pm 1.07$ $-3.01 \pm 0.06 \pm 0.31$ $14.0 \pm 1.1 \pm 2.7$ $D^{*}(2010)^{-}$ $17.0 \pm 1.0 \pm 2.4$ $3.05 \pm 0.11 \pm 0.48$ $-2.91 \pm 0.06 \pm 0.28$ $D_2^*(2460)$ $22.35 \pm 0.76 \pm 0.74$ $22.53 \pm 0.74 \pm 0.54$ $D_1^*(2600)$ $0.218 \pm 0.030 \pm 0.051$ $0.13 \pm 0.16 \pm 0.22$ $1.28 \pm 0.39 \pm 0.60$ $1.32 \pm 0.38 \pm 0.59$ $D_3^*(2750)$ $0.153 \pm 0.032 \pm 0.040$ $-2.80 \pm 0.19 \pm 0.60$ $0.32 \pm 0.15 \pm 0.21$ $0.33 \pm 0.14 \pm 0.20$ $D_1^*(2760)$ $0.119 \pm 0.044 \pm 0.153$ $-0.18 \pm 0.34 \pm 1.01$ $0.26 \pm 0.27 \pm 1.37$ $0.28 \pm 0.26 \pm 1.35$ $D_{J}^{*}(3000)$ $1.44 \pm 0.23 \pm 1.15$ $1.40 \pm 0.23 \pm 1.33$ $0.45 \pm 0.16 \pm 0.34$ $0.46 \pm 0.15 \pm 0.33$ $D\pi$ S-wave $1.142 \pm 0.045 \pm 0.083$ $-0.972 \pm 0.045 \pm 0.084$ $44.9 \pm 1.9 \pm 3.6$ $48.3 \pm 1.8 \pm 3.5$

Common mass and widths is:

 $M = 2.908 \pm 0.011 \pm 0.020 \, \text{GeV}$ $\Gamma = 0.136 \pm 0.023 \pm 0.013 \,\text{GeV}$

30

arXiv:2212.02717v1

 $T^a_{c\bar{c}0}(2900)^0: M = (2.892 \pm 0.014 \pm 0.015) \,\text{GeV}$ $\Gamma = (0.119 \pm 0.026 \pm 0.013) \,\text{GeV}$ $T^a_{c\bar{s}0}(2900)^{++}: M = (2.921 \pm 0.017 \pm 0.020) \,\text{GeV}$ $\Gamma = (0.137 \pm 0.032 \pm 0.017) \,\text{GeV}$

Significance estimated from $2\Delta LL$

New state has 9 σ Spin parity: 7.5 σ 0⁺ vs 1⁻

➢ Branching ratio measured:

 $\frac{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+)}{\mathcal{B}(B^+ \to D^+ D^- K^+)} = 0.525 \pm 0.033 \pm 0.027 \pm 0.034, \qquad \text{arXiv:2211.05034 accepted by PRD}$

> Observed state: X(3960) with $J^P = 0^{++}$ close to $D_s^+ D_s^-$ threshold

> Branching ratio measured:

 $\frac{\mathcal{B}\left(B^{+} \to D_{s}^{+} D_{s}^{-} K^{+}\right)}{\mathcal{B}\left(B^{+} \to D^{+} D^{-} K^{+}\right)} = 0.525 \pm 0.033 \pm 0.027 \pm 0.034,$

arXiv:2211.05034 accepted by PRD

- > Observed state: X(3960) with $J^{P}=0^{++}$ close to $D_{s}^{+}D_{s}^{-}$ threshold
- ▷ Previously measured $\chi_{c0}(3930)$ in D^+D^- does not fit in $\chi_{c0}(2P)$ [4131–4292 MeV] or $\chi_{c0}(3P)$ [3842–3868 MeV] spectrum.
- > If $\chi_{c0}(3930)$ and X(3960) are the same particle:

$$\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}^{(1)} \mathcal{F}_X^{(1)}}{\mathcal{B}^{(2)} \mathcal{F}_X^{(2)}} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08$$

> If X(3960) had no $s\bar{s}$ content $\Gamma(D^+D^-) >> \Gamma(D_s^+D_s^-)$ contradicting the ratio above

 \rightarrow either not the same resonance or they are the same non-conventional charmonium-like state [candidate containing the $c\overline{c}s\overline{s}$ dominant constituents]

arXiv:2210.15153 accepted by PRL

- ➤ X(4140) produces the dip around 4140 MeV via destructive interference with the 0⁺⁺ NR and X(3960) components → with (-22.4 ± 6.4)% and (-5.2 ± 3.9)% interference fractions
- → If the dip produced by the opening of the nearby $J/\psi \phi$ threshold →test with **K matrix** with coupled channels $J/\psi \phi$ and $D_s D_s$

arXiv:2210.15153 accepted by PRL

- ➤ X(4140) produces the dip around 4140 MeV via destructive interference with the 0⁺⁺ NR and X(3960) components → with (-22.4 ± 6.4)% and (-5.2 ± 3.9)% interference fractions
- ► If the dip produced by the opening of the nearby $J/\psi\phi$ threshold → test with K matrix with coupled channels $J/\psi\phi$ and D_sD_s
- \succ K-matrix parameterisation similar fit quality as baseline model \rightarrow no strong conclusion whether the dip is due to:
 - destructive interference with the $X_0(4140)$ resonance
 - or caused by the $J/\psi \phi \rightarrow D_s^+ D_s^-$ rescattering.

Need more data to confirm!

arXiv:2210.15153 accepted by PRL

Exotic Spectroscopy at LHCb

> Tetraquarks

- $B^+ \rightarrow J/\psi \phi K^+$ two states : $T^{\theta}_{\psi s1}(4000)^+$ and $T_{\psi s1}(4220)^0$
- New doubly charged and neutral open charmed tetraquarks observed in $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$
- New state from the amplitude analysis of $B^+ \rightarrow D_s^+ D_s^- K^+$

> Pentaquarks

• Strange pentaquark candidate in $B^- \rightarrow J/\psi \Lambda \bar{p}$

Strange pentaquark candidate $P_{\psi s}^{\Lambda}$

- ≻ Amplitude analysis of $B^- \rightarrow J/\psi \Lambda \bar{p}$
- ➢ A new narrow pentaquark state observed
- \succ Close to the mass threshold $\Xi_c^+ D^-$
- ➢ Spin ½ and preferred parity odd
- \succ First observation of pentaquark with strange content
- > Previous analysis by CMS JHEP12(2019)100 $[c\bar{c}uds]$

Strange pentaquark candidate $P_{\psi s}^{\Lambda}$

 \succ Fit with only the known K* resonances

This model does not describe the data well $\chi^2/ndf = 123/46$

2.1

-0.5

Conclusions

>LHCb leading contributions on conventional and exotic spectroscopy shown today:

- \checkmark New tetraquark and pentaquark candidates shown
- \checkmark New singly and doubly heavy baryons found with high significance
- \checkmark New method for polarization measurement of spin $\frac{1}{2}$ baryons
- Spectroscopy of heavy hadrons is crucial to understand QCD dynamics and binding rules
 these are valuable inputs for the theory community
- Collaboration theory/experiment is crucial here: need predictions for masses, widths, lifetimes and model to describe/discover exotics.

LHCb Run 3 data will help access decays not yet observed, and more analysis are on-going with LHCb Run1 and Run2 data, so stay tuned!

Stange pentaquark candidate $P_{\psi s}^{\Lambda}$

Fit with $\overline{P}^{N}\psi^{-}$ contribution

This model is discarded because of an increase in -2 log L around 80

Efficiency corrected distributions

40

arXiv:2210.10346v1

Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{\prime+}\pi^{+}$

Search for $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{\prime+}\pi^{+}$ and measure branching fraction

- $\geq E_c^{\prime +} \rightarrow E_c^+ \gamma$, partial reconstructed signal in $m(E_c^+ \pi^+)$
- > Similar efficiency & comparable production as $\mathcal{Z}_{cc}^{++} \rightarrow \mathcal{Z}_{c}^{+} \pi^{+}$

$$\geq \frac{B(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})}{B(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})}$$
 prediction vary between **0**. **3** ~ **7**

1st observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{\prime+}\pi^{+}$ with 2016-2018 data, $\mathcal{L} \sim 5.4 \text{ fb}^{-1} \rightarrow \text{statistical significance} > 9 \sigma$

Amplitude analysis $D^+(D_s^+) \rightarrow \pi^+\pi^-\pi^+$

 \overline{s}

ab $\rightarrow \pi + \pi -$ scattering

Indicating $f_0(500)$ as dynamical pole of $\pi\pi \to \pi\pi$ rescattering ?

 $(s\bar{s})$

 $\sum s\bar{q}_i q_i \bar{s} = K^+ K^- + K^0 \overline{K}{}^0 + \frac{1}{3}\eta\eta$