Current status and Physics Potential of the Hyper-Kamiokande Experiment

La Thuile 2023 - Les Rencontres de Physique de la Vallée d'Aoste

Thomas Mueller

Laboratoire Leprince-Ringuet

March 7, 2023

The Hyper-Kamiokande detector

	Super-K	Hyper-K
Site	Mozumi	Tochibora
Overburden	2780 m.w.e.	1700 m.w.e.
Number of ID PMTs	11129	20000
Photo-coverage	40%	20% (×2 efficiency)
Mass / Fiducial Mass	50 kton / 22.5 kton	258 kton / 186 kton

Hyper-Kamiokande will begin taking data in 2027

Th.	Α.	Muel	ler ((I R)
				/

Neutrino detection with water Cherenkov detectors

Muon

Electron

courtesy of SK collaboration

The Hyper-Kamiokande collaboration

• Around 500 collaborators from all around the world working together, sharing expertise and building a milestone in particle physics

• This week: First in-person meeting since Feb. 2020

Neutrinos in the Standard Model... and beyond

3 mixing angles, 2 squared mass differences, 1 CP violation phase open questions: mass hierarchy? $\theta_{23} > 45^{\circ}$ or $< 45^{\circ}$? value of δ_{CP} ? unitarity?

Th. A. Mueller (LLR)

Neutrinos in the Standard Model... and beyond

reactors

3 mixing angles, 2 squared mass differences, 1 CP violation phase open questions: mass hierarchy? $\theta_{23} > 45^{\circ}$ or $< 45^{\circ}$? value of δ_{CP} ? unitarity?

Th. A. Mueller (LLR)

Neutrinos in the Standard Model... and beyond

3 mixing angles, 2 squared mass differences, 1 CP violation phase open questions: mass hierarchy? $\theta_{23} > 45^{\circ}$ or $< 45^{\circ}$? value of δ_{CP} ? unitarity?

Th. A. Mueller (LLR)

Neutrino oscillation in a nutshell

2-flavour approximation: $P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right)$

VB

detector

 I_{B}

w

3 flavours : much longer to write... but the same basic principle

$$\delta_{CP} \neq 0 \Rightarrow P(\nu_{\alpha} \rightarrow \nu_{\beta}) \neq P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})$$

Matter-antimatter asymmetry?

two possibilities for the neutrino mass spectrum

NB: we know that the mass state containing most ν_e is the lighter of the two "solar mass" states $\Delta m_{21}^2 \equiv m_2^2 - m_1^2 > 0$ and $\theta_{12} < 45^\circ$ thanks to the observation of the matter effect in the Sun

HK physics case

MSW effect in the Sun Non standard interactions in the Sun

Solar neutrinos

• SK/SNO found high matter effect in the Sun \Leftrightarrow P_{ee} upturn shifted to low energies

- $\bullet\,$ SK deviates from "standard" upturn scenario by $>2\sigma$
- Statistical fluctuation? Light sterile neutrino? Non Standard Interaction (NSI) in the Sun?
- Hyper-Kamiokande solar ν physics : explore upturn region, probe day/night asymmetry (matter effects in the Earth), solve tension w/ KamLAND results

HK physics case

MSW effect in the Sun Non standard interactions in the Sun

Constraints SN models Constraints star formation history

Th. A. Mueller (LLR)

Supernovae neutrinos

- 99% of the gravitational energy of a SN is released into neutrinos ⇒ knowledge about the mechanisms in the core of the collapsing star
- SK only sensitive to galactic SN $(\sim 8000 \text{ events})$ which are extremely rare (few times per century) so far only SN1987a in LMC (12 events in Kamiokande)
- HK sensitive to extra-galactic SN (Andromeda)
- If SN in the galactic center, ~ 50k events ⇒ unprecedented constraints in both time and energy [K. Abe et al. ApJ 916 15 (2021)]
- Directional resolution of 1° @ 10 kpc
 ⇒ multi-messengers astronomy

Diffuse Supernovae Neutrino Background

- Neutrinos produced by all of the supernova explosions since the beginning of the universe
- Detection channel IBD: $\bar{
 u}_e + p \rightarrow e^+ + n$
- First detection in SK-Gd? Gd has very large *n* capture cross section and a very distinctive *γ* signature [arXiv:0309300] Lastest results for DSNB search at SK [K. Abe et al. PRD 104 (2021)]
- Shape of the spectrum with HK!
- Dependency with the redshift
 ⇒ rate as a function of time
- Sensitivity to fraction of failed SN *i.e.* neutron star vs BH (harder spectrum)

[HK LOI, arXiv:1109.3262]

Diffuse Supernovae Neutrino Background

- Neutrinos produced by all of the supernova explosions since the beginning of the universe
- Detection channel IBD: $ar{
 u}_e + p
 ightarrow e^+ + n$
- First detection in SK-Gd? Gd has very large *n* capture cross section and a very distinctive *γ* signature [arXiv:0309300] Lastest results for DSNB search at SK [K. Abe et al. PRD 104 (2021)]
- Shape of the spectrum with HK!
- Dependency with the redshift
 ⇒ rate as a function of time
- Sensitivity to fraction of failed SN *i.e.* neutron star vs BH (harder spectrum)

HK physics case

Solar-neutrinos

Proton decay (GUT)

MSW effect in the Sun Non standard interactions in the Sun

Constraints SN models Constraints star formation history

Th. A. Mueller (LLR)

GUT and proton decay

- Probe Grand Unified Theories at a new scale through proton decay
- Golden channel : $p \rightarrow e^+ + \pi^0$, very clean event topology, almost background free (dominant bkg is atmospheric ν producing a π^0)

Th. A. Mueller (LLR)

GUT and proton decay

- Probe Grand Unified Theories at a new scale through proton decay
- Golden channel : $p \rightarrow e^+ + \pi^0$, very clean event topology, almost background free (dominant bkg is atmospheric ν producing a π^0)

HK physics case

Solar-neutrinos

Proton decay (GUT)

MSW effect in the Sun Non standard interactions in the Sun

Constraints SN models Constraints star formation history

Th. A. Mueller (LLR)

Hyper-Kamiokande long-baseline program

- Search for ν_{μ} ($\bar{\nu}_{\mu}$) disappearance \Rightarrow precise measurement of atmospheric parameters
- Search for ν_e ($\bar{\nu}_e$) appearance \Rightarrow search for CP violation in the lepton sector
- Upgraded beam power to 1.3 MW w.r.t. T2K (\sim 500 kW)
- Upgraded ND280 (off-axis detector of T2K)
- New Intermediate Water Cherenkov Detector @ 1 km

Intermediate Water Cherenkov Detector (IWCD)

- Solid angle different at near and far detector
- Take a combination of reconstructed number of neutrinos (e.g. in p/θ) to correctly predict the flux at HK \Rightarrow helps in reducing systematics related to cross-section models
- Water Cherenkov \Rightarrow same as HK, excellent PID
- $\bullet~{\rm Distance} \sim 1~{\rm km}$
- Loaded w/ Gd for n tagging?
- ND280 + IWCD complementary to reach \leq 3% syst.

• Assumption $\nu:\bar{\nu} = 1:3$ with beam @ 1.3 MW

- If $\delta_{CP} = -\pi/2$: 5 σ after 2-4 years of data taking, independent from \searrow systematics
- 5 σ sensitivity on 60% of $\delta_{\rm CP}$ values in 10 years
- HK has world-best sensitivity to CP violation... if MH is known

Atmospheric neutrinos and mass-hierarchy determination

• Mass-hierarchy can be accessed through matter effects, the longer the baseline, the higher the effects

- Mass-hierarchy determined with upward-going multi-GeV ν_e sample: atm. baseline \leq 130000 km \gg 295 km accelerator baseline
 - Normal hierarchy: enhancement of $P(
 u_{\mu} \rightarrow
 u_{e})$
 - Inverted hierarchy: enhancement of $P(ar{
 u}_{\mu}
 ightarrow ar{
 u}_{e})$
- Sensitivity enhanced if ν/ν̄ separation ⇒ neutron capture [ν (ν̄) interactions on nuclei produce a p (n)]

Th. A. Mueller (LLR)

Combination of atmospheric + beam neutrinos

- $\bullet\,$ Even if MH is not known when HK starts, sensitivity to CP violation is little affected if we use atmospheric $\nu\,$
- MH will be determined \leq 6-10 years through atmospheric u oscillations

Precision of δ_{CP} measurement

• After CPV is determined, accurate measurement of δ_{CP} will be crucial \Rightarrow maximal CPV, constrain leptogenesis scenarios, symmetries of lepton's generation,...

• HK will be the leading experiment for CPV & δ_{CP} measurements in the next 20 years

Th. A. Mueller (LLR)

Beginning of HK construction

Access tunnel entrance when the excavation just started on May 6, 2021

Beginning of HK construction

Groundbreaking ceremony held online on May 28, 2021

Th. A. Mueller (LLR)

PMT production and delivery

Total 3772 PMTs (\sim 20%) delivered by April 2022

Current status of HK construction

Center of the future HK main cavern's dome reached on June 23, 2022

Th. A. Mueller (LLR)

Summary and conclusion

- Hyper-Kamiokande is a next-generation neutrino experiment built on the success of Super-Kamiokande with $8 \times$ larger fiducial volume and improved PMTs
- Upgraded beam program with 1.3 MW beam power, upgraded near detectors and new Intermediate Water Cherenkov Detector ⇒ towards discovery of CP violation in the lepton sector
- Extraordinary research project with extraordinary scientific significance
- Highly versatile multi-purpose experiment, with capability to explore variety of topics in the MeV TeV energy range: beam neutrinos, solar and atmospheric neutrinos, supernovae neutrinos, DSNB, neutrino astrophysics, dark matter, proton decay and other baryon number-violating processes, ...

Construction on-going! Data taking in 2027!

New collaborators welcome!

BACK-UP SLIDES

From NuFIT 5.0 (2020), www.nu-fit.org

Parameter	$bfp{\pm}1\sigma$	1σ acc.	Experiment	Comment
$\sin^2 heta_{12}$	0 304+0.012	4.2%	KamLAND,	unitarity?
	0.504_0.012		SK, SNO	
$\Delta m^2_{21} \; [10^{-5} \; { m eV}^2]$	7 42+0.21	2.8%	KamLAND	
	1.42-0.20		SK, SNO	
$\sin^2 heta_{23}$	NH: 0.573 ^{+0.016} -0.020	1 3%	T2K, NO $ u$ A, SK	unitarity? octant?
	IH: 0.575 ^{+0.016} -0.019	4.370		$(heta_{23}{>}45^\circ ext{ or }{<}45^\circ?)$
$\Delta m^2_{3\ell} \ [10^{-3} \ { m eV}^2]$	NH: $\Delta m_{31}^2 = 2.517^{+0.026}_{-0.028}$	1.2%	T2K, ΝΟνΑ,	mass hierachy?
	IH: $\Delta m_{32}^2 = -2.498^{+0.028}_{-0.028}$	1.270	SK, Daya Bay	
$\sin^2 heta_{13}$	NH: 0.02219 ^{+0.00062} -0.00063	3.0%	Daya Bay, RENO,	unitarity?
	IH: 0.02238 ^{+0.00063} -0.00062	5.070	Double Chooz	
$\delta_{\rm CP}$ [degree]	NH: 197 ⁺²⁷ -24		T2K, ΝΟ <i>ν</i> Α	3σ measurement?
	IH: 282 ⁺²⁶ -30	-	(w/ $ heta_{13}$ constraint)	CP violation?

Open questions in neutrino oscillations : mass hierarchy, θ_{23} octant, value of $\delta_{\rm CP}$, unitarity?

Regeneration of solar ν_e 's in the Earth?

During day solar ν 's cross atmosphere + thin part of crust \Rightarrow negligible matter effects During night they come from below, passing through the Earth \Rightarrow matter effects (density in the core ~ 0.01 Sun)

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= \begin{bmatrix} 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \end{bmatrix} \\ &+8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &-8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta)\sin^{2}\Delta_{21} \\ &-8c_{13}^{2}s_{12}^{2}s_{23}^{2}\frac{aL}{4E}(1 - 2s_{13}^{2})\cos\Delta_{32}\sin\Delta_{31} + 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\frac{a}{\Delta m_{21}^{2}}(1 - 2s_{13}^{2})\sin^{2}\Delta_{31} \end{split}$$

Th. A. Mueller (LLR)

ν_e appearance in accelerator experiments (2)

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}c_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ \hline & -8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta)\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{12}^{2}s_{23}^{2}\frac{aL}{4E}(1 - 2s_{13}^{2})\cos\Delta_{32}\sin\Delta_{31} + 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\frac{a}{\Delta m_{31}^{2}}(1 - 2s_{13}^{2})\sin^{2}\Delta_{31} \end{split}$$

$$P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \quad a \rightarrow -a \quad \delta \rightarrow -\delta$$

Th. A. Mueller (LLR)

Hyper-Kamiokande prospects for the CP phase (1)

Reconstructed neutrino beam event samples disappearance (left) and appearance (right)

Reconstructed antineutrino beam event samples disappearance (left) and appearance (right)

Appearance channel is sensitive to the value of CP but needs the precise measurement of other parameters, *e.g.* θ_{23}

Operating the beam in neutrino and antineutrino modes and the various muon and electron-like samples help solving degeneracies As so does the input from atmospheric neutrinos

The T2K experiment

3) well-defined ν_{μ} beam (purity > 99%)

4) far detector 50 kton Water Cherenkov

 ν_e appearance: leading order $\theta_{\rm 13},$ sub-leading δ_{CP} ν_μ disappearance: atm. parameters

Th. A. Mueller (LLR)

T2K & HK: Intense & high quality ν_{μ} beam

<u>first</u> off-axis experiment (beam @ 2.5°)

energy tuned for oscillation maximum, 0.5% ν_e contamination

Th. A. Mueller (LLR)

The near detector complex (INGRID + ND280)

- INGRID @ on-axis:
 - $\rightarrow \nu$ beam monitoring
- ND280 @ 2.5° :
 - \rightarrow Normalisation of neutrino flux
 - \rightarrow Measurement of ν cross-sections
 - UA1 dipole magnet (0.2 T),
 - P0D (π^0 detector)
 - FGD+TPC (target + tracking)
 - ECAL (EM calorimeter),
 - Side-μ-range detector

* Beam currently capable of 450-500kW stable running

* Beam line upgrade in 2021
- Nd280 upgrade will
happen at the same time

* target power: 1.3MW

ND280

ND280

Same off-axis angle as SK

- Active target mass \rightarrow 2 x scintilltors (FGDs)
 - → vertex reconstruction
- 3 Time projection chambers (TPC)
 - → momentum reconstruction
 - → charge identification
 - → Particle identification (**PID**)
- Electromagnetic calorimeters (Ecal) → PID
- π^{0} detector and side muon range detector

Pi0 detector is being replaced by * SuperFGD

- higher granularity, 3D readout
- * Horizontal TPCs (HTPCs)
- * Time of Flight (ToF) planes
- \rightarrow increases active target mass for oscillation analysis
- \rightarrow improved angular acceptance
- \rightarrow able to reconstruct low energy short tracks
 - \rightarrow improved hadronic information
 - \rightarrow better y \rightarrow e⁺ e⁻ identification

Reduce systematic uncertainty to 4%

 $\rightarrow 3\sigma$ exclusion of CP conservation for 36% of the δ_{cp} phase space (if mass hierarchy is known)

Neutrino interactions (1)

Interactions occur with nucleons bound inside a nucleus

→ Nuclear effects!!

We only measure particles that exit the nucleus \rightarrow lose information about the initial interaction

 \rightarrow can create a bias in energy reconstruction

Neutrino interactions (2)

