

Dark Matter Searches with COSINE-100, present and perspectives In-Soo Lee

Center for Underground Physics (IBS)

On behalf of the COSINE-100 collaboration

March 7th, 2023

Motivation-DAMA/LIBRA

- DAMA/LIBRA experiment
 - Search for Dark matter (DM) annual modulation signature
 - Using 25 × 9.7 NaI(Tl) detectors
 - Claim an observation of the DM (WIMP modulation signal) at 12σ C.L. (2-6 keV, 2.17 ton · year)
 - Amplitude : 0.0096 ± 0.0008 counts/day/kg/keV
 - Phase = 145 ± 5 days
 - Period = 0.9987 ± 0.0008 year

- No other experiment has succeeded direct detection of DM except for DAMA/LIBRA.
 - Is NaI(Tl) special for DM interaction?

COSINE-100, InSoo Lee

NaI(Tl) Dark matter search

COSINE-100 experiment

- Joint collaboration of **DM-ICE** & **KIMS**
- \sim 50 collaborators in 17 institutes
- To confirm **DAMA/LIBRA's claim** using same target material, **NaI(Tl)**

COSINE-100 experiment-NaI(Tl)

- 8 low-background NaI(Tl) crystals with 106 kg in total
 - **U/Th/K level** is less than DAMA, but total alphas (²¹⁰Pb) are higher than DAMA.
 - Total **background** level is **2-3 times that of DAMA/LIBRA**.
 - Higher light yield (15 P.E./keV) than DAMA/LIBRA (5-10 P.E./keV)
 - Can make the threshold lower easily
 - Each crystal is **encapsulated** in **copper and quartz windows**.
 - Two 3-inch PMTs (R12669SEL) are attached to each crystal.
 - Quantum efficiency: 35% @ 420 nm

COSINE-100 experiment-Shielding

- Active veto
 - Liquid scintillator (LS)
 - 2200-L LAB-based LS
 - 5-inch PMT(R877) for LS detector
 - 4π Muon counter
 - 37 plastic scintillator panels
 - 2-inch PMT(H7195) for muon counter
- Passive veto
 - **3-cm** thick **copper box**
 - 20-cm thick lead castle
- Neutron monitoring
 - Fast neutron detector (Liquid Scintillator)
 - Thermal neutron detector (³He gas detector)

Liquid scintillator

Nucl. Instrum. Meth. A 106, 165431 (2021) Nucl. Instrum. Met<mark>l</mark>. A 851 103 (2017)

COSINE shielding structure

Operation & slow monitoring

Slow monitoring

JINST 17 T01001 (2022)

Slow monitoring system

- > 200 parameters
- DAQ system trigger rate
- Electronics status
- Environmental parameters
- Neutron rate

ullet

• Stable run from Sep. 2016

- **DAQ efficiency > 96%** (calibration runs, power outage)
- Exposure time > 6 years

SET 1 : 59.5 days SET 2 : ~1.7 years SET 3 : ~3.0 years SET 4 : ~4.5 years

Event Selection

- Use Set 2 (1.7 year) data
- Use pulse-shape parameters to select Nal scintillation signals
 - Meantime, likelihood parameters
- Use Boosted decision tree (**BDT**) to separate PMT-noise from scintillation signal
- Achieve 1 keV threshold

Background Modeling

EPJC 81, 837 (2021) Astropart. Phys. 126, 102528 (2021)

- **SET2 1.7-year** data with 1 keV Threshold
- Use detector simulation based on GEANT4
- Single (Multiple) Hit : Time coincidence w/o (w/) other crystal or LS
- Exclude **WIMP ROI** (<6keV single hit) in the fitting
- Background in low energy region
 - Cosmogenic activation (mostly ³H)
- Main background
- Contamination of ²¹⁰Pb
 Contamination of crystals from K/U/Th

WIMP extraction

- Spin-independent(SI) WIMP Search with SET2 data
 - 1.7 years data with 1 keV threshold
 - Fit background + WIMP signal data in [1, 15] keV

• No WIMP signal in 1 keV threshold

WIMP extraction

Science Advances. 7, 46 (2021)

• Exclude DAMA/LIBRA phase 1 considering quenching factor.

WIMP extraction

• Exclude possible EFT operators.

WIMP extraction using Migdal effect

Nuclear recoil → Boost of electrons → Secondary radiation

Phys. Rev. D 105, 042006

- Large visible energy of electron recoil compared to nuclear recoil.
- \rightarrow Enables to search **low mass WIMP** (100 MeV Scale)

Annual modulation analysis (3 years data)

• Full model of time dependent background components

Phys. Rev. D 106, 052005 (2022)

Annual modulation analysis (3 years data)

• Full model time dependent rate fitting

Phys. Rev. D 106, 052005 (2022)

Annual modulation w/ DAMA/LIBRA method

arXiv:2208.05158

16

- Test DAMA/LIBRA method in COSINE-100 data
 - Apply similar DAMA/LIBRA event selection
 - No LS Veto
 - No Muon Veto
 - DAMA parameter for event selection
 - 600 ns waveform integration window.
 - Test DAMA/LIBRA background modeling

Annual modulation w/ DAMA/LIBRA method

arXiv:2208.05158

- Test DAMA/LIBRA method in COSINE-100 data
 - Apply DAMA/LIBRA event selection
 - No LS Veto
 - No Muon Veto
 - DAMA parameter for event selection
 - 600 ns waveform integration window.
 - Test DAMA/LIBRA background modeling

Annual modulation w/ DAMA/LIBRA method

- arXiv:2208.05158
- Background model for DAMA/LIBRA using the COSINE-100 background compositions

• Similar modulation amplitude in 1000 pseudo-experiment (Opposite phase)

Pseudo data	-0.0098 ± 0.0008
DAMA/LIBRA	0.0105 ± 0.0011

On going works

- Event selection improvement
 - Aim to 0.5 keV threshold
 - Deep learning (MLP) method

- Background modeling
 - Non-Proportionality update
 - Extended modeling range 6-3000keV \rightarrow 6-4000 keV
 - 1.7-year background modeling

Exotic DM interaction

- Inelastic Boosted Dark Matter
- Solar Axions
- Several effective operators
- Inelastic WIMP-¹²⁷I interaction
- Cosmic-ray Boosted Dark matter

JCAP 06, 048 (2019) Astropart. Phys. 114 101 (2019) Phys. Rev. Lett. 122 131802 (2019)

- Crystal development for COSINE-200
 - In-house development of entire process (at IBS , Korea)
 - Nal powder purification
 - Crystal growing
 - Detector assembly
 - Prepare ~0.7 kg R&D crystals
 - Expect ~0.2 DRU background level for COSINE-200 crystal
 - On going development for full size crystal growing (~100 kg)
 - Prepare COSINE-200 crystal by end of 2024

Crystal grower

J. Phys. Conf. Ser. 1468 012144

CUP Grown R&D crystals

COSINE-100, InSoo Lee-

Eur. Phys. J.C. 80 814 (2020) Frontiers in Physics 11 (2023)

- Crystal development for COSINE-200
 - In-house development of entire process (at IBS , Korea)
 - Nal powder purification
 - Crystal growing
 - Detector assembly
 - Prepare ~0.7 kg R&D crystal
 - Expect ~0.2 DRU background level for COSINE-200 crystal
 - On going development for full size crystal growing (~100 kg)
 - Prepare COSINE-200 crystal by end of 2024

Crystal grower

Energy (keV)

Eur. Phys. J.C. 80 814 (2020) **Background level in R&D crystals Expected background level** Frontiers in Physics 11 (2023) in COSINE-200 ²³⁸U(ppt) ²³²Th(ppt) K (ppb) ²¹⁰Pb (mBq/kg) DAMA/LIBRA 16.8 ± 2.5 **COSINE** 1.87±0.09 < 0.02 0.7±0.2 Counts/keV/kg/day Powder 5 <20 <20 0.9 ± 0.3 1.7 ± 0.5 Aug.2018 <53 0.01 ± 0.02 Sep.2019 <42 0.42 ± 0.27 36.5 ± 3.9 <4.9 Feb.2021 8.3±4.6 0.38 ± 0.10 <2.0 <0.8 10⁻²0 0.7-10 <20 0.01~0.03 0.5-7.5 DAMA 10 40 50

ŻŻ

JINST 17 P02027 (2022)

- Low temperature operation (at -35°C)
 - ~5 % increased Light yields
 - ~9% increased alpha quenching

• COSINE-200 will operate at -35°C

Yemilab @ Jeonseon

- Newly constructed underground laboratory at Jeongseon in 2022
 - **1.1 km** rock overburden
- Move to Yemilab in 2023

Upgrade COSINE-100

- Move COSINE-100 to Yemilab in 2023
- As an intermediate experiment of the COSINE-200 @ Yemilab
 - Use COSINE-100 crystal
 - Use **new encapsulation** method
 - Improve light yields >20 P.E./keV
 - Operate at -35°C environment
- Operate **upgrade COSINE-100** until COSINE-200 crystal preparation

COSINE detector fridge room @Yemilab

• New encapsulation technique

Nucl. Instrum. Meth. A 981, 164556 (2020)

- Direct attachment of PMT to crystal
- ~50% increased light Yield
 - 15 P.E. → 22 P.E.

Sensitivity estimation

Condition for upgrade COSINE-100 (COSINE-200)

- 1 year
- Light yields 22 P.E./keV
- COSINE-100 (R&D crystal) background
- No systematics

Schedule for COSINE-100&200

	2023	2024	2025	
DAQ run	DAQ stop	Upgrade COISINE-10	0 COSINE-200	
Encapsulation upgrade				
Y2L→Yemilab				
COSINE-200 development		COISINE-200 R&D		

- Stop COSINE-100 DAQ in Mar. 2023
- Start DAQ run after 6 months encapsulation upgrade at Yemilab (~Oct. 2023)
- Movement Y2L→Yemilab in Aug. 2023
- Operate **upgrade COSINE-100** until COSINE-200 crystal preparation
- Start **COSINE-200** in middle of 2025

Summary

- COSINE-100 is an experiment to reproduce the DAMA/LIBRA signal via the same target material, NaI(Tl).
- Spectral Analysis
 - Exclude DAMA/LIBRA signal using 1.7 data
 - Low mass WIMP region was checked considering Migdal Effect.
- Modulation analysis
 - Could **not make clear decision** about DAMA/LIBRA modulation signal using **3 years data**
 - **Negative amplitude** using DAMA/LIBRA modeling method
- Preparations are ongoing for next phase, **COSINE-200**.
 - In-house development of entire crystal growing process at IBS , Korea
 - R&D NaI(Tl) crystals with ~0.2 count/day/kg/keV of background level.
 - **50% light yields** improvement with **new encapsulation technique**.
 - Tested the properties of NaI(Tl) **at -35°C**
- We are planning an **intermediate experiment** of the **COSINE-200**.
 - Upgrade COSINE-100 encapsulation for higher light yield
 - Start upgrade COSINE-100 DAQ after 6-month upgrade period (~Oct.2023)

Back up

Annual modulation signal

DAMA/LIBRA result

COSINE-100, InSoo Lee

Why ²²Na calibration?

- To get pure low energy gamma spectrum,
 - Tagging coincidence event with other crystals' 511 keV or 1274 keV event

On going works

- Event selection improvement
 - Aim to 0.5 keV threshold
 - Deep learning (MLP) method

- Background modeling
 - Non-Proportionality update
 - Extended modeling range 6-3000keV \rightarrow 6-4000 keV
 - 1.7-year background modeling

- Crystal development for COSINE-200
 - In-house development of entire process (at IBS , Korea)
 - Nal powder purification
 - Crystal growing
 - Detector assembly
 - ~0.7 kg crystal w/ ~0.2 count/day/kg/keV
 - On going development for full size crystal (~100 kg)

Podwer purification facilities

	CL	CUP Grown crystals		Eur. Phys. J.C. 80 Frontiers in Phys	Background level
	К	²¹⁰ Pb	²³⁸ U	²³² Th	
COSINE	16.8±2.5	1.87±0.09	<0.02	0.7±0.2	
Powder	5	-	<20	<20	
Aug.2018	<53	0.01±0.02	0.9±0.3	1.7±0.5	¶stung
Sep.2019	<42	0.42±0.27	36.5±3.9	<4.9	
Feb.2021	8.3±4.6	0.38±0.10	<2.0	<0.8	10 ⁻² 0 10 20 30 40 50 Energy (keV)
DAMA	<20	0.01~0.03	0.7-10	0.5-7.5	

NEON-Phase 2 upgrade

- Upgrade encapsulation (Apr. 2022)
 - Fix mechanical instability (Air or LS leak)
 - Achieve higher light yields
 - Add more mass : **13.6 → 16.3 kg**
- Exclude two high background crystals

• Include two 8" length crystals

Crystal #	# Size (dia x length)	Light yields(PE/keV)		
		Phase 1	Phase 2	
1	3″ x 4″	20.5 ± 0.9	Excluded	
2	3″ x 4″	19.3 ± 0.9	Excluded	
3	3″ x 4″	21.8 ± 0.9	23.9 ± 0.8	
4	3″ x 8″	22.4 ± 1.0	24.5 ± 0.7	
5	3″ x 8″	21.8 ± 0.9	22.9 ± 0.4	
6	3″ x 4″	21.7 ± 1.0	20.2 ± 0.4	
7	3″ x 8″	-	22.0 ± 0.5	
8	3″ x 8″	-	26.7 ± 0.8	

Encapsulation

- Inner structure for PMT-crystal connection
 - Direct contact PMT and crystal with optical pad
 - PTFE body, Brass bolt
 - PMT base shield (PTFE)

Encapsulation cont'd

• Copper case

- Same as **NEON** experiment
- To prevent LS & air leak
 - **PTFE** Gasket
 - Cable gland

NaI(Tl) Crystal

- 8 ultra low-background NaI(Tl) crystal with 106 kg in total
- U/Th/K level is less than DAMA, but total alphas (~210Pb) are higer than DAMA.
- Higher light yield (15 p.e/keV) than DAMA
 - Easier to reach lower threshold
- Total background is 2-3 times that of DAMA

Crystal	Mass (kg)	Powder	Alpha rate (mBq/kg)	⁴⁰ K (ppb)	²³⁸ U (ppt)	²³² Th (ppt)	<mark>Light yield</mark> (p.e./keV)
Crystal 1	8.3	AS-B	3.20 ± 0.08	43.4 ± 13.7	< 0.02	1.31 ± 0.35	14.88 ± 1.49
Crystal 2	9.2	AS-C	2.06 ± 0.06	82.7 ± 12.7	< 0.12	< 0.63	14.61 ± 1.45
Crystal 3	9.2	AS-WS II	0.76 ± 0.02	41.1 ± 6.8	< 0.04	0.44 ± 0.19	15.50 ± 1.64
Crystal 4	18.0	AS-WS II	0.74 ± 0.02	39.5 ± 8.3		< 0.3	14.86 ± 1.50
Crystal 5	18.0	AS-C	2.06 ± 0.05	86.8 ± 10.8		2.35 ± 0.31	7.33 ± 0.70
Crystal 6	12.5	AS-WSII	1.52 ± 0.04	12.2 ± 4.5	< 0.018	0.56 ± 0.19	14.56 ± 1.45
Crystal 7	12.5	AS-WSII	1.54 ± 0.04	18.8 ± 5.3		< 0.6	13.97 ± 1.41
Crystal 8	18.3	AS-C	2.05 ± 0.05	56.15 ± 8.1		< 1.4	3.50 ± 0.33
DAMA			< 0.5	< 20	0.7 - 10	0.5 – 7.5	5.5 – 7.5

Eur. Phys. J. C. 78 107 (2018)

Upgrade plan for COSINE-100

- COSINE-100 @ Yemilab
 - Crystals used in COSINE-100
 - Recover un-used crystals(# 1, 5, 8)
 - With **new** technique of **encapsulation** (Light yields >20 PEs/keV) Nucl. Instrum. Meth. A 981 (2020) 164556
 - At -35°C environment JINST 17 P02027 (2022)

000000000000			
Crystal #	Size (diameter x length)	Light yield(PEs/keV)	used and some states
1	5.0" x 7.0"	14.9 ±1.5	€2.50 C C L L C L L C C L C C C C C C C C C
2	4.2" x 11.0"	14.6 ± 1.5	Recta to the second
3	4.2" x 11.0"	15.5 ±1.5	auns ucour revealed
4	5.0" x 15.3"	14.9 ±1.5	10 10 Lot 10 10 10 10 10 10 10 10 10 10 10 10 10
5	5.0" x 15.5"	7.3 ±0.7	
6	4.8" x 11.8"	14.6 ± 1.5	Tenas sol the sol
7	4.8" x 11.8"	14.0 ± 1.4	light and myson to use the
8	5.0" x 15.5"	3.5 ±0.3	Vemileh men
		COSINE-100	InSoo Lee remilab map Al

COSINE-100 crystals

