First results from the XENONnT Dark Matter Experiment

Valerio D'Andrea

INFN Sezione di Roma Tre on behalf of the XENON Collaboration

La Thuile 2023 - Les Rencontres de Physique de la Vallée d'Aoste March 5th - 11th, 2023

Outline

• Introduction

- XENON Collaboration
- Working Principle
- XENON History
- XENONnT
 - Detector Upgrades
 - Purification Systems and Distillation Columns
- First Results from XENONnT

XENON Collaboration

XENON Collaboration

XENON Location

XENON Detector: Dual-Phase Xe TPC

- dual-phase Xenon (LXe + GXe)
- prompt scintillation light S1 in LXe
- secondary-light signal S2 in GXe
- electrodes to establish electric fields
- 3D event reconstruction

S2/S1 ratio to discriminate electronic recoil (ER) and nuclear recoil (NR)

Evolution of XENON detectors

Low Background Techniques in XENON

- Underground facility at LNGS, muon flux 3.4 10⁻⁴ m⁻²s⁻¹ JCAP 05 (2012) 015
- LXe properties: Radiopure & Self-shielding
- Cherenkov muon veto <u>JINST 9, P11006</u>
- Online Krypton Distillation <u>PTEP 074 (2022)</u> <u>EPJC (2017) 77, 275</u>
- XENONnT Upgrades:
 - Strong material selection <u>EPJC (2022) 82, 599</u>
 - Improved Purification Systems <u>EPJC (2018) 78, 604</u> <u>EPJC (2022) 82, 860</u>
 - NEW radon distillation column EPJC (2022) 82, 110
 - NEW neutron veto with Gd-loaded water

XENONnT

- Larger TPC (1.3 x 1.5 m) with active LXe mass 5.9 t
- TPC read by 494 PMTs
- Purifications Systems Improvement
- Radon distillation column
- New Neutron Veto (nVeto)

XENONnT GXe/LXe Purification Systems

- improved GXe purification with magnetically coupled piston pumps
- only high-purity components to guarantee low Rn emanation

EPJC (2018) 78, 604

- novel LXe purification with ultra-low radon emanation O₂ filters
- continuous monitor of impurities, electron lifetime > 10 ms (< 0.1 ppb)

EPJC (2022) 82, 860

XENONnT Online Krypton Distillation Column

PTEP 074 (2022) EPJC (2017) 77, 275

- developed for XENONIT
- system demonstrated a concentration level
 < 50 ppq ^{nat}Kr/Xe
- column also used to reduce ³⁷Ar
- technique based on the higher vapor pressure of Kr/Ar compared to Xe at -96 °C
- more volatile gases (Ar/Kr) enriched at Top Condenser and depleted in the Reboiler

XENONnT Radon Distillation Column

EPJC (2022) 82, 1104

- **novel distillation column** to separate Rn from GXe due to lower vapor pressure
- 1.7 µBq/kg ²²²Rn achieved (factor of ~10 lower than XENON1T), expected further reduction to reach XENONnT goal of 1 µBq/kg

XENONnT Neutron Veto

- **nVeto** with Gd-doped water, high cross-section for thermal neutrons capture ($\sigma \sim 10^5$ b for ¹⁵⁷Gd)
- volume of 33 m³ around the cryostat instrumented with 120 low radioactivity PMTs
- **Gd-water purification system** to improve transparency for Cherenkov radiation
- **efficient neutron tag** of ~87% (so far nVeto with demi-water, 66% tagging efficiency)

First Results from XENONnT

First Results from XENONnT (V. D'Andrea)

La Thuile 2023 14

XENONIT Low-ER excess

PRD 102, 072004 (2020)

- electron recoil search < 30 keV
- 285 events observed, 232 ± 15 expected (3.3σ fluctuation)
- compatible with beyond-SM (solar axions, enhanced neutrino magnetic moment, ALPs, dark photons ...)
- compatible with ³H contamination at 3.2 σ with concentration (6.2 ± 2.0) × 10–25 mol/mol

Addressing this question in next slides

XENONnT First Science Run

PRL 129, 161805 (2022)

- 97.1 days of exposure from July 6th to Nov 11th 2021
- 477 out of 494 PMTs operative, gain stable at 3% level
- Drift field 23 V/cm (cathode voltage limited to –2.75 kV due short circuit between cathode and bottom screen)
- Extraction field in LXe 2.9 kV/cm
- Temporary anode ramp-downs due to localized high-rate single-electron emissions

PRL 129, 161805 (2022)

Two homogeneously-distributed ER calibration sources:

- ²¹²Pb from ²²⁰Rn with a flat β -spectrum, to estimate cut acceptances and energy threshold
- ³⁷Ar with a mono-energetic 2.82 keV peak, validates resolution model and energy reconstruction of peaks

Detection and selection efficiencies

PRL 129, 161805 (2022)

- **Detection efficiency** validated with data and waveform simulations
- Events required to pass quality cuts:
 - S1 and S2 peaks must have patterns, area ratios, ecc... consistent with real events
 - S2 width consistent with the expected diffusion (modeled with ^{83m}Kr data)
- Fiducial volume cut yields a mass of (4.37 ± 0.14) tonnes

Electronic Recoil background

PRL 129, 161805 (2022)

- ²¹⁴Pb ultra-low activity of 1.3 µBq/kg
- ⁸⁵Kr ultra-low level of 56 ppq ^{nat}Kr/Xe
- subdominant background from detector materials <u>EPJC (2022) 82, 599</u>
- Xe long-lived isotopes: ββ decay of ¹³⁶Xe, ECEC in ¹²⁴Xe PRC 106, 024328 (2022)
- electron scattering of solar neutrinos
- ¹³³Xe by neutron activation from ²⁴¹AmBe and ^{83m}Kr from calibrations

Energy range (1, 140) keV, exposure 1.16 t y

NR and ER data below 20 keV blinded

Unblinding of LowER Region

PRL 129, 161805 (2022)

³H contamination is the most plausible explanation for the XENON1T excess

XENONIT vs XENONnT

- Lowest ER background in XENONnT of 15.8 ev/(t y keV), factor 5 background reduction with respect to XENON1T
- No excess below 5 keV found: 8.6σ exclusion on XENON1T excess

Limit on New Physics

- Xe based dual-phase TPC is the **leading technology** for direct dark matter searches
- XENONNT has several improvements w.r.t. XENONIT: strong material selection, upgraded GXe/LXe purification, novel Radon column and efficient neutron veto
- XENONnT was successfully commissioned and data taking is ongoing:
 - results from 1st science reported the lowest ER background ever achieved in DM experiments
 - no excess above the background, excluding BSM interpretations of the XENONIT excess
 - soon new results on WIMPs search
- XENON, LZ and DARWIN collaborations are joining forces towards a next-generation
 LXe observatory (XLZD) for dark matter search and neutrino physics white paper

Home

Dark Matter

Our Detector -

Collaboration

Science -Media -

News

XENON Dark Actes Provide Action of the INFN Laboratori Nazionali de Gasso, Italy.

EXPLORE

Thanks you for the attention!

Follow us **@XENONexperiment** <u>@xenonexperiment</u> @xenon_experiment

XENONIT

<u>EPJC (2017) 77, 881</u>

- cylindric TPC (97 x 96 cm)
- mass 3.2 t LXe (2.0 t active)
- drift field ~ 100 V/cm
- 248 3-inch PMTs
- X-Y reconstruction via neural network
- best energy resolution ever in LXe TPC ~1.6% at 2.5 MeV and 6% at 40 keV

- water tank with Cherenkov muon veto (mVeto)
- novel cryogenics, Xe storage and purification systems, most systems used also in XENONnT

Energy Reconstruction

- Calibration using 4 low-energy peaks ³⁷Ar, ^{83m}Kr, ^{129m}Xe and ^{131m}Xe
- Observed 1-2% bias in reconstructed energy used as systematic uncertainty in modeling

Detector response stability

Bi-weekly 83m Kr, α 's from 222 Rn and γ 's from materials background used for monitoring light and charge yields

Tritium control

- Tritium (³H) as possible explanation for the XENONIT excess
- Additional contamination control in XENONnT:
 - 3 months of detector outgassing
 - 3 weeks of GXe (warm) cleaning with hot getters
 - All Xe inventory circulated in advance through Kr-removal system
 - $\circ~$ GXe purified with hot getters when filling the TPC ~
- 14.3 days of special data-taking mode after SR0:
 - "Tritium-enhanced" data (TED) bypassing getters
 - Conservative estimate for ³H enhancement of at least x10
- Results of blind TED analysis: no significant ³H levels in SR0

XENONnT Expected Sensitivity on WIMPs

- focus on WIMP detection, with exposure of 20 t x yr sensitivity on spin-independent interaction of 1.4×10⁻⁴⁸ cm² (90% CL) with 50 GeV/c² mass JCAP (2020) 11 031
- reduction of ²²²Rn background is crucial to increase the sensitivity

Next-generation Dark Matter experiment

Joining forces toward a next-generation liquid xenon observatory for dark matter and neutrino physics: XLZD J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001

- Direct Dark Matter Search expected sensitivity with 200 ton x yr 3×10⁻⁴⁹ cm² @ 40 GeV/c²
- Search for the neutrinoless double-beta decay (136 Xe) with sensitivity of T_{1/2}~10²⁷ yr (90% C.L.)
- Solar Neutrinos: precise measurements of pp and ⁷Be fluxes (<1%) through elastic e-v scattering
- Observation of supernova via CEvNS
- New physics prospects: solar axions, galactic axion-like particles and dark photons