La Thuille 2023 - Les Rencontres de Physique de la Vallée d'Aoste 5 - 11 March 2023

Right-handed neutrinos and IceCube events

Pasquale Di Bari (University of Southampton)

Cecar Vera Tole

Why new physics?

Even ignoring:

□ (more or less) compelling theoretical motivations (quantum gravity theory, flavour problem, hierarchy and naturalness problems,...) and

□ Experimental anomalies (e.g., $(g-2)_{\mu}$, R_{K} , R_{K}^{*} ,...)

The SM+GR cannot explain:

Why new physics?

Even ignoring:

□ (more or less) compelling theoretical motivations (quantum gravity theory, flavour problem, hierarchy and naturalness problems,...) and

□ Experimental anomalies (e.g., $(g-2)_{\mu}$, R_{K} , R_{K}^{*} ,...)

The SM+GR cannot explain:

- 1. Dark matter
- 2. Matter antimatter asymmetry
- 3. Inflation
- 4. Accelerating Universe

<u>Neutrino masses</u> and mixing

right-handed (RH) neutrinos provide a unified solution

Minimally extended SM: Dirac neutrinos

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{y}^{v}$$

$$-\mathcal{L}_{y}^{v} = \overline{v_{L}}hv_{R}\phi \Rightarrow SSB \Rightarrow -\mathcal{L}_{Dirac}^{v} = \overline{v_{L}}m_{D}v_{R}; m_{D} = vh \qquad \begin{array}{l} \text{Dirac} \\ \text{Mass} \\ \text{(in a basis where charged lepton mass matrix is diagonal)} \\ \text{diagonalising } m_{D} : m_{D} = V_{L}^{\dagger}D_{m_{D}}U_{R} \qquad D_{m_{D}} \equiv \begin{pmatrix} m_{D1} & 0 & 0 \\ 0 & m_{D2} & 0 \\ 0 & 0 & m_{D3} \end{pmatrix} \\ \Rightarrow \qquad \begin{array}{l} \text{neutrino masses:} \qquad m_{i} = m_{Di} \\ \text{leptonic mixing matrix:} \qquad U = V_{L}^{\dagger} \end{array}$$

many unanswered questions:

- Why neutrinos are much lighter than all other fermions?
- Why large mixing angles (differently from CKM angles)?
- Cosmological puzzles?

At the present time dark matter acts as a cosmic glue keeping together

bullet cluster

...but it also needs to be primordial to understand structure formation and CMB anisotropies

(Hu, Dodelson, astro-ph/0110414)

Massive (ordinary) neutrinos as dark matter?

Ordinary left-handed neutrinos decouple relativistically $\Rightarrow n_{\nu 0} \sim n_{\gamma 0}$

$$\Omega_{v0} = \frac{n_{v0} \sum m_i}{\varepsilon_{c0}} \Longrightarrow \sum_i m_i \simeq 93 \text{ eV } \Omega_{v0} h^2$$

 $\text{Imposing } \Omega_{v0}h^2 \leq \Omega_{DM0}h^2 \simeq 0.12 \Rightarrow \sum_i m_i = 11 \text{eV } f_v \quad (f_v \equiv \Omega_{v0} / \ \Omega_{DM0})$

- However, massive neutrinos do not seem to play any role in structure formation
- In fact, neutrino masses are even detrimental contributing to unwanted hot dark matter in the Λ CDM model \Rightarrow for this reason (combining CMB + BAO) one obtains an upper bound $f_v \leq 0.02$ translating into

$$\sum_i m_i \lesssim 0.23 \text{ eV}$$

Non-relativistic freeze-out

A WIMP miracle?

$$\langle \sigma_{\rm ann}^{\rm weak} \beta_{\rm rel} \rangle \simeq \frac{\alpha_{\rm weak}^2}{m_X^2} \simeq 4 \times 10^{-37} \,{\rm cm}^2 \, \left(\frac{100 \,{\rm GeV}}{m_X}\right)^2 \Rightarrow (\Omega_X h^2)_{\rm WIMP} \sim \mathcal{O}(0.1) \, \left(\frac{100 \,{\rm GeV}}{m_X}\right)^2$$

□ The WIMP miracle has been for long time regarded as a standard solution to address the problem of dark matter: embeddable in models addressing naturalness+hierarchy problems \Rightarrow new physics at the 100 GeV - TeV scale

WIMP non-miracle

Dark matter direct searches (1902.03234)

Dark matter indirect searches (1604.00014)

(XENONnT results exclude XENO1T ~keV excess 2207.11330)

These results do not rule out WIMPs but they are today not anymore considered as the standard option but one out of many possible ones

Beyond the WIMP paradigm (from Baer et al.1407.0017)

The more we know the less we understand?

Beyond the WIMP paradigm: the DM particle zoo (from Baer et al.1407.0017)

New frontiers

(SHIP proposal, 1504.04855)

Minimal seesaw mechanism (type I) • Dirac + (right-right) Majorana mass term

(Minkowski '77; Gell-mann,Ramond,Slansky; Yanagida; Mohapatra,Senjanovic '79)

$$-\mathcal{L}_{mass}^{v} = \overline{v}_{L} m_{D} v_{R} + \frac{1}{2} \overline{v_{R}^{c}} M v_{R} + h.c. = -\frac{1}{2} (\overline{v}_{L} \overline{v_{R}^{c}}) \begin{pmatrix} 0 & m_{D}^{T} \\ m_{D} & M \end{pmatrix} \begin{pmatrix} v_{L} \\ v_{R}^{c} \end{pmatrix} + h.c.$$

In the see-saw limit (M >> m_D) the mass spectrum splits into 2 sets:

- 3 light Majorana neutrinos with masses (seesaw formula): $m_v = -m_D M^{-1} m_D^T \Rightarrow \text{diag}(m_1, m_2, m_3) = -U^{\dagger} m_v U^*$
- 3(?) very heavy Majorana neutrinos $N_{1,} N_2, N_3$ with $M_3 > M_2 > M_1 >> m_D$

1 generation toy model :

 $m_{D} \sim m_{top},$ $m \sim m_{atm} \sim 50 \text{ meV}$ $\Rightarrow M \sim 10^{15} \text{ GeV}$

Matter-antimatter asymmetry with leptogenesis (Fukugita, Yanagida '86) •Type I seesaw mechanism •Thermal production of RH neutrinos: $T_{RH} \gtrsim T_{lep} \simeq M_i / (2 \div 10)$ heavy neutrinos decay $N_I \xrightarrow{\Gamma_I} L_I + \phi^{\dagger} N_I \xrightarrow{\Gamma} L_I + \phi$ → efficiency total CP asymmetries $\varepsilon_{I} \equiv -\frac{\Gamma - \Gamma}{\Gamma + \Gamma} \implies N_{B-L}^{fin} = \sum_{I=1,2,3} \varepsilon_{I} \times \kappa_{I}^{fin}$ factors Sphaleron processes in equilibrium $\Delta B = \Delta L = 3$ \Rightarrow T_{RH} \gtrsim T^{off}_{sphalerons} \simeq 132 GeV (Kuzmin, Rubakov, Shaposhnikov '85 D'Onofrio, Rummukainen, Tranberg 1404.3565) $\implies \eta_{B0}^{lep} = \frac{a_{sph}^{N_{B-L}^{m}}}{N^{rec}} \simeq 0.01 N_{B-L}^{fin}$ C sphaleron $\mathcal{N}_{B0}^{ep} = \mathcal{N}_{B0}^{obs} \sim 6 \cdot 10^{-10}$ successful leptogenesis

Dark matter from active-sterile neutrino mixing

(Dodelson Widrow '94; Shi, Fuller '99; Dolgov and Hansen '00; Asaka, Blanchet, Shaposhnikov '05)

$$V_{1L} \simeq U_{1\alpha}^{\dagger} \left(V_{L\alpha} - \frac{m_{D\alpha 1}}{M_1} V_{R1}^c \right)$$

 LH-RH (active-sterile) neutrino mixing

 $N_{1R} \simeq V_{1R} + \frac{m_{D\alpha 1}}{M_1} V_{L\alpha}^c$ — lightest RH neutrino

• Solving Boltzmann equations an abundance is produced at T~100 MeV:

$$\Omega_{N_{1}}h^{2} \sim 0.1 \frac{\theta^{2}}{10^{-8}} \left(\frac{M_{1}}{\text{keV}}\right)^{2} \sim \Omega_{DM,0}h^{2} \qquad \theta^{2} \equiv \frac{\sum_{\alpha} |m_{D\alpha 1}|^{2}}{M_{1}^{2}}$$
For $M_{1} \ll m_{e} \Rightarrow \tau_{1} = 5 \times 10^{26} s \left(\frac{M_{1}}{keV}\right)^{-5} \left(\frac{10^{-8}}{\theta^{2}}\right) \gg t_{0}$

- The lightest neutrino mass $m_1 \lesssim 10^{-5} \text{ eV} \Rightarrow$ hierarchical neutrino masses
- The N₁'s also radiatively decay and this produces constraints from X-rays (or opportunities to observe it).
- Considering also structure formation constraints, one is forced to consider a resonant production induced by a large lepton asymmetry
- L~10⁻⁴ : 3.5 keV line? (Horiuchi et al. '14; Bulbul at al. '14; Abazajian '14) The XRISM satellite to be launched in 2023 should give a final answer

Heavy RH neutrino as dark matter? (Anisimov, PDB '08)

What production mechanism? For high masses just a tiny abundance is needed:

$$N_{DM} \simeq 10^{-9} (\Omega_{DM,0} h^2) N_{\gamma}(t_{prod}) \frac{\text{TeV}}{M_{DM}}$$

Suppose there is a RH neutrino with tiny Yukawa couplings (e.g., proportional to a small symmetry breaking parameter) referred to as dark neutrino N_D :

$$m_{D} \simeq \begin{pmatrix} \varepsilon_{e_{1}} & m_{De_{2}} & m_{De_{3}} \\ \varepsilon_{\mu_{1}} & m_{D\mu_{2}} & m_{D\mu_{3}} \\ \varepsilon_{\tau_{1}} & m_{D\tau_{2}} & m_{D\tau_{3}} \end{pmatrix} \text{ or } m_{D} \simeq \begin{pmatrix} m_{De_{1}} & \varepsilon_{e_{2}} & m_{De_{3}} \\ m_{D\mu_{1}} & \varepsilon_{\mu_{2}} & m_{D\mu_{3}} \\ m_{D\tau_{1}} & \varepsilon_{\tau_{2}} & m_{D\tau_{3}} \end{pmatrix} \text{ or } m_{D} \simeq \begin{pmatrix} m_{De_{1}} & m_{De_{2}} & \varepsilon_{e_{3}} \\ m_{D\mu_{1}} & m_{D\mu_{2}} & \varepsilon_{\mu_{3}} \\ m_{D\tau_{1}} & m_{D\tau_{2}} & \varepsilon_{\tau_{3}} \end{pmatrix}$$

$$m_D = V_L^{\dagger} D_{m_D} U_R \qquad D_{m_D} \equiv v \operatorname{diag}(h_A, h_B, h_C) \text{ with } h_A \leq h_B \leq h_C$$

$$\tau_{DM} = \frac{4\pi}{h_A^2 M_{DM}} = 0.87 h_A^2 10^{-26} \frac{\text{TeV}}{M_{DM}} s \implies \tau_{DM} \approx 10^{28} s \Rightarrow h_A < 10^{-27} \sqrt{\frac{\text{TeV}}{M_{DM}}} \times \frac{10^{28} \text{s}}{\tau_{DM}^{\min}} s$$

Too small to reproduce the correct abundance with any production mechanism within a minimal type-I seesaw extension

5-dimensional Higgs portal-like operators as a way out

(Anisimov hep-ph/0612024, Anisimov, PDB 0812.5085)

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \mathcal{L}_{\mathcal{Y}+\mathcal{M}}^{\nu} + \mathcal{L}_{\mathcal{A}}$$

$$-\mathcal{L}_{\mathcal{Y}+\mathcal{M}}^{v}=\overline{L}_{\alpha}h_{\alpha I}N_{I}\tilde{\phi}+\frac{1}{2}\overline{N_{I}^{c}}M_{I}N_{I}+h.c.$$

$$\mathcal{L}_{A} = \sum_{I,J} \frac{\lambda_{IJ}}{\Lambda} \phi^{\dagger} \phi \overline{N_{I}^{c}} \mathcal{N}_{J} + h.c.$$

$$= \frac{\lambda_{DS}}{\Lambda} \phi^{\dagger} \phi \overline{N_{D}^{c}} N_{S} + \frac{\lambda_{SS}}{\Lambda} \phi^{\dagger} \phi \overline{N_{S}^{c}} N_{S} + \frac{\lambda_{DD}}{\Lambda} \phi^{\dagger} \phi \overline{N_{D}^{c}} N_{D} + h.c. \quad (N_{D} = N_{3}; N_{S} = N_{2})$$

Remarks:

- RH-RH (sterile-sterile) Higgs-induced neutrino mixing (RHINO)
- from SMEFT to vSMEFT
- They are kind of Weinberg operators but a further step up
- They extend Higgs portal renormalizable operator (Patt, Wilczek hepph/0605188)

RHINO dark matter

(Anisimov '06, Anisimov,PDB '08)

Focus on the RH-RH Higgs-induced neutrino mixing (RHINO) operator:

$$\mathcal{L}_{A} = \frac{\lambda_{DS}}{\Lambda} \phi^{\dagger} \phi \, \overline{N_{D}^{c}} N_{S} \qquad \qquad \widetilde{\Lambda}_{DS} = \Lambda \, / \, \lambda_{DS}$$

In general, $\lambda_{DS} \neq 0$ this generates a dark-source RH neutrino mixing. The Yukawa and Anisimov interactions both generate effective potentials from self-energies:

Effective mixing Hamiltonian :

$$\Delta \mathcal{H} \simeq \begin{pmatrix} -\frac{\Delta \mathcal{M}^2}{4p} - \frac{T^2}{16p}h_s^2 & \frac{T^2}{12\tilde{\Lambda}_{DS}} \\ \frac{T^2}{12\tilde{\Lambda}_{DS}} & \frac{\Delta \mathcal{M}^2}{4p} + \frac{T^2}{16p} \end{pmatrix}$$

mixing term

 $\Delta M^2 \equiv M_s^2 - M_p^2$

Density matrix calculation of the relic abundance

(P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

Density matrix equation for the dark-source RH neutrino system (using a monocromatic approximation $p \sim 3T$)

$$\frac{dN_{IJ}}{dt} = -i\left[\Delta H, N\right]_{IJ} - \begin{pmatrix} 0 & \frac{1}{2}(\Gamma_{D} + \Gamma_{S})N_{DS} \\ \frac{1}{2}(\Gamma_{D} + \Gamma_{S})N_{SD} & (\Gamma_{D} + \Gamma_{S})(N_{N_{S}} - N_{N_{S}}^{eq}) \end{pmatrix}$$

Assuming an initial thermal N_S-abundance

Dark neutrinos MUST decay \Rightarrow decaying DM

(Anisimov, PDB '08; Anisimov, PDB'10; P.Ludl. PDB, S.Palomarez-Ruiz'16)

<u>2 body decays (M_S>M_W)</u>

Dark neutrinos unavoidably decay today into A+leptons (A=H,Z,W) through the same mixing that produced them in the very early Universe

$$\theta_{\Lambda 0} = \frac{2 v^2 / \widetilde{\Lambda}_{\rm DS}}{M_{\rm D} \left(1 - M_{\rm S} / M_{\rm D}\right)}$$

$$\Gamma_{\mathrm{D}\to A+\ell_{\mathrm{S}}} = \frac{h_{\mathrm{S}}^2}{\pi} \left(\frac{v^2}{\widetilde{\Lambda}}\right)^2 \frac{M_{\mathrm{D}}}{(M_{\mathrm{D}}-M_{\mathrm{S}})^2}$$

 \Rightarrow Lower bound on M_D .

mixing angle today

(for $\theta_{A0} \ll 1$)

<u>4 body decays</u>

$$N_{\rm DM} \to 2\overline{A} + N_{\rm S} \to 3A + \nu_{\rm S} \ (A = W^{\pm}, Z, H).$$
$$\Gamma_{\rm D\to 3A+\ell_{\rm S}} = \frac{\Gamma_{\rm S}}{15 \cdot 2^{11} \cdot \pi^4} \ \frac{M_{\rm D}}{M_{\rm S}} \ \left(\frac{M_{\rm D}}{\widetilde{\Lambda}_{\rm DS}}\right)^2$$

 \Rightarrow Upper bound on M_D

3 body decays and annihilations also can occur but yield weaker constraints

DM lifetime vs. mass plane: allowed regions (P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

It works only for initial thermal N₅ abundance, unless $M_5 \sim 1$ GeV and $M_D \gtrsim 10^7$ GeV

Can one think of processes able to thermalize the N_S abundance prior to the oscillations? Two good motivations

Unifying Leptogenesis and Dark Matter

(PDB, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

A solution for initial thermal N_S abundance:

IceCube

- Neutrinos are perfect astronomical messengers (from the edge of the universe)
- In the range 10 TeV 10 EeV only neutrinos are unabsorbed and undeflected
- 2013: IceCube discovered cosmic VHE neutrinos (30 TeV 1 PeV range)
- Some observed in coincidence with blazar γ -ray flare: extragalactic origin
- High Energy Starting Events (HESE) veto to reduce overwhelming atmospheric background at energies ≤ 300 TeV ⇒ first evidence of cosmic neutrinos
- Up-going muon data set has confirmed the existence of cosmic neutrinos but

IceCube up-going muon neutrinos

IceCube 8 years data

Standard single powerlaw spectrum for an astrophysical flux

$$\frac{d\Phi}{dE} = \Phi_0 \cdot \left(\frac{E_v}{100 \,\mathrm{TeV}}\right)^{-\gamma_{astro}}$$

Best fit

$$\frac{d\Phi_{\nu+\bar{\nu}}}{dE} = (1.01 \pm ^{0.26}_{0.23}) \left(\frac{E}{100 \,\mathrm{TeV}}\right)^{-2.19 \pm 0.10} \cdot 10^{-18} \mathrm{GeV}^{-1} cm^{-2} s^{-1} sr^{-1}.$$

An extra component at ~100 TeV?

IceCube 6 year HESE data (1710.01191)/

A multimessenger analysis confirms an 100 TeV excess

IceCube 6 year HESE data (1710.01191)

Absence of strong anisotropies

This disfavours scenarios with strong Galactic emissions, the dominant component is of extra-galactic origin

Very high energy neutrinos from N_D decays

(Anisimov,PDB,0812.5085;PDB, P.Ludl,S. Palomarez-Ruiz 1606.06238)

- Dark neutrinos unavoidably decay today into A+leptons (A=H,Z,W) through the same mixing that produced them in the very early Universe
- The produced neutrinos can be responsible for the excess at ~100 TeV in IceCube

Example: M_{DM}=300TeV

(from 1606.06238)

Searches for Connections between Dark Matter and High-Energy Neutrinos with IceCube

IceCube Collaboration

2.5 σ significance when compared to the null hypothesis best fit point: m_D=386 TeV, τ_D =2.8x10²⁷ s

Many proposed production mechanisms

Many production mechanisms have been proposed especially to address **IceCube** initially seemingly anomalous PeV neutrino events:

- •from SU(2)_R extra-gauge interactions (LRSM) (Fornengo, Niro, Fiorentin);
- •from inflaton decays (Anisimov,PDB'08; Higaki, Kitano, Sato '14);
- from resonant annihilations through SU(2)' extra-gauge interactions (Dev, Kazanas, Mohapatra, Teplitz, Zhang '16);
- •From new U(1), interactions connecting DM to SM (Dev, Mohapatra, Zhang '16);
- •From U(1)_{B-L} interactions (Okada, Orikasa '12);

•.....

In all these models IceCube data are fitted through fine tuning of parameters responsible for decays (they are post-dictive)

DM lifetime vs. mass plane: allowed regions

(P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

What processes can thermalize the N_s-abundance prior to the oscillations?

Including Higgs portal interactions for $N_{\mbox{\scriptsize S}}$

Can these interactions thermalise the source neutrinos prior to oscillations? Let us modify the kinetic equations including these processes:

$$\frac{dN_{IJ}}{dt} = -i\left[\Delta H, N\right]_{IJ} - \begin{pmatrix} 0 & \frac{1}{2}(\Gamma_{D} + \Gamma_{S})N_{DS} \\ \frac{1}{2}(\Gamma_{D} + \Gamma_{S})N_{SD} & (\Gamma_{D} + \Gamma_{S})(N_{N_{S}} - N_{N_{S}}^{eq}) + \frac{\langle\sigma_{\phi\phi \to N_{S}N_{S}}V\rangle}{R^{3}}(N_{N_{S}}^{2} - N_{N_{S}}^{eq^{2}}) \end{pmatrix}$$
$$A(z) = \frac{\langle\sigma_{\phi\phi \to N_{S}N_{S}}V\rangle}{R^{3}Hz} = \frac{A(z=1)}{z^{2}}; \quad \langle\sigma_{\phi\phi \to N_{S}N_{S}}V\rangle_{T >> M_{S}} \approx \frac{1}{4\pi\Lambda_{SS}}$$
$$\Rightarrow A(z=1) \approx g_{N}\frac{3}{16}\frac{\xi(3)}{\pi^{3}}\sqrt{\frac{90}{8\pi^{3}}g_{R}}\frac{M_{D}M_{Pl}}{\Lambda_{SS}}$$

Condition for the thermalisation of the N_s abundance

(PDB, A. Murphy, arXiv 2210.10801)

$$\Rightarrow N_{N_{S}}(z_{in} \ll z \ll 1) - N_{N_{S}}(z_{in}) \simeq \frac{A_{1}}{z_{in}} \simeq 1.0 \times \left(\frac{T_{in}}{10^{16} \text{GeV}}\right) \left(\frac{10^{16} \text{GeV}}{\Lambda_{SS}}\right)^{2} \simeq 1$$

The emerging effective scale for the thermalization coincides with the grandunified scale: a RHINO miracle ?

DM lifetime vs. mass plane: allowed regions

(PDB, A. Murphy, arXiv 2210.10801)

Decaying DM best fit (2.5σ) from IceCube 7.5 year data (2205.12950)

Upper bound on the seesaw (=leptogenesis) scale

(PDB, A. Murphy, arXiv 2210.10801)

The mechanism is compatible with (resonant) leptogenesis at a scale upto ~ 100 TeV

A possible GUT origin ? Heavy scalar H as mediator

(Anisimov, PDB, 2008; P.Ludl.PDB, S.Palomarez-Ruiz'16; Kolb and Long 1708.04293; PDB, A. Murphy, arXiv 2210.10801)

$$\mathcal{L}_H = \frac{1}{2} \partial_\mu H \partial^\mu H - \frac{1}{2} M_H^2 H^2 - \sum_{I,J} \lambda_{IJ} H \overline{N_I^c} N_J - \mu H \phi^{\dagger} \phi \,.$$

For $\mu \sim 10^9 \text{GeV}$ one can have $\tilde{\Lambda}_{\text{DS}} \sim 10^{23} \text{ GeV}$ and $\lambda_{\text{DS}} \sim O(1)$ but one cannot reproduce simultaneously $\tilde{\Lambda}_{\text{SS}} \sim 10^{16} \text{GeV}$ with the same scale Λ

A possible GUT origin ? Heavy fermion F as mediator

This time one can have one scale $\Lambda = M_F \sim M_{GUT}$ and for $y_S \sim 1$ and $y_D \sim 10^{-7}$:

$$\widetilde{\Lambda}_{DS} = \frac{\Lambda}{\gamma_{D}\gamma_{S}} \sim 10^{23} \text{GeV} \qquad \widetilde{\Lambda}_{SS} = \frac{\Lambda}{\gamma_{S}\gamma_{S}} \sim \Lambda \sim 10^{16} \text{GeV} \qquad \widetilde{\Lambda}_{DD} = \frac{\Lambda}{\gamma_{D}\gamma_{D}} \sim 10^{30} \text{GeV}$$

 $y_D \sim 10^{-7}$ could be understood as a small symmetry (e.g. Z_2) breaking parameter

- The DM puzzle might have a solution at higher scales than those traditionally explored so far and....
-RH neutrinos provide a very intriguing solution. An heavy RH neutrino playing the role of DM requires an extension of the usual type-I seesaw Lagrangian (able already to explain neutrino masses and mixing and the matter-antimatter asymmetry via leptogenesis).
- Higgs induced sterile-sterile neutrino mixing provides not only a way to produce dark neutrinos with the right abundance but also it makes them detectable at neutrino telescopes.
- Higgs portal interactions for the seesaw (source) neutrino enhance the dark neutrino production and allow to lift the scale of leptogenesis up to 100 TeV.
- Interestingly, the IceCube collaboration find an excess in the neutrino flux at energies well explained by RHINO DM decays (with M_D ~100 TeV) and further support comes from multimessenger astronomy
- Soon (?) new analysis of anisotropies in the IceCube high energy neutrino flux might provide a crucial test for heavy decaying DM

Freeze-in solution for annihilating particles (FIMPs)

FIMPs evade all constraints, even too much: they are typically untestable!

Very high energy neutrinos from N_D decays

(Anisimov, PDB, 0812.5085; PDB, P.Ludl, S. Palomarez-Ruiz 1606.06238)

- > DM neutrinos unavoidably decay today into A+leptons (A=H,Z,W) through the same mixing that produced them in the very early Universe
- > Potentially testable high energy neutrino contribution

IceCube data

atm. u IceCub

atm. v IceCub

astro v ($\gamma = 2$; ϕ

10

= 1.6

Energy neutrino flux

Flavour composition at the detector

Neutrino events at IceCube: 2 examples

 10^{-10}

10

M_{DM}=8 PeV

10