# **Neutrino Astrophysics** with IceCube



### Using neutrinos for Astrophysics

Particle Source

Gamma rays / <u>X-rays</u>·

Intergalactic magnetic field

Charged particles

Neutrinos

Interstellar dust cloud

### Neutrinos

- point back to their source
- could unveil hidden phenomena

Charged particles



### Neutrino flux at Earth



Power-law flux  $\Phi_{\nu} = \Phi_0 E^{-\gamma}$ Flux falls off faster than cross section increases  $\rightarrow$  Large statistics at lower energies

pollmann@chiba-u.jp







### IceCube

South Pole

IceCube Laboratory

### Working principle

- Particles interact with the deep clear ice
- Emitted light is detected by sensors

### Fully operational since 2011

### Geometry

- volume 1 km<sup>3</sup> 1450m –
- vertical spacing 17 m
- horizontal spacing 125 m

Inice Array 86 strings, each with 60 optical sensors



### pollmann@chiba-u.jp



### IceCube

South Pole

IceCube Laboratory

### Working principle

- Particles interact with the deep clear ice
- Emitted light is detected by sensors

### Fully operational since 2011

### Geometry

- volume 1 km<sup>3</sup> 1450m –
- vertical spacing 17 m
- horizontal spacing 125 m

**Inice Array** 86 strings, each with 60 optical sensors



### pollmann@chiba-u.jp



and the second second second second second

### Cherenkov Light

charged particle



# Neutrino signatures

### Track like topology

- good angular resolution 0.1° 1°
- increased effective volume (vertex outside volume)
- challenging energy resolution



### Cascade like topology

- all flavours
- calometric measurement of energy resolution ~15%
- angular resolution around 10° > 100 TeV







**Kinematic angle** 



(data)













# Rejecting background

Shielding: •record through-going µ-neutrinos •use earth to filter atmospheric μ

Vμ

Vμ

 $V_{\mu}$ 

p

p

µ dominated pminated

v dominated

pollmann@chiba-u.jp



Vu









## Astrophysical neutrinos

The universe glows brightly in Neutrinos Energie density of  $\gamma$  and  $\nu$  matches over many orders of magnitudes





### **Neutrino presence hints to** hadronic processes

$$\begin{array}{c} p+p \\ p+\gamma \rightarrow X+\pi \end{array} \begin{cases} \pi^0 \rightarrow \gamma \gamma \\ \pi^+ \rightarrow \mu^+ + \nu_\mu \\ \mu^+ \rightarrow e^+ + \bar{\nu}_\mu + \nu_e \\ n \rightarrow p + e^- + \bar{\nu}_e \end{array}$$



## Flavour of neutrinos at Earth

- between different analyses: tension in spectral index
- caveat: tracks vs cascades & Northern vs Southern sky







### Flavour of neutrinos at Earth

- neutrinos with 60 TeV 2 PeV
- $v_{\tau}$  hard to identify

### **Production model:** After mixing:

 $v_{e}: v_{\mu}: v_{t} \sim 1:2:0$  $v_{e}: v_{\mu}: v_{t} \sim 1:1:1$ 



pollmann@chiba-u.jp





### **Neutrino emission from NGC1068**



- distribution matches model prediction
- coincidence with NGC1068
- global significance 4.2  $\sigma$

pollmann@chiba-u.jp



### NGC1068: an obscured accelerator



pollmann@chiba-u.jp







### Neutrino real-time alert system - first astrophysical v source

0

### Singlet v:

- since 2016, re-designed 2019
- gold events: 10/y, signalness > 50%
- silver events: 20/y, signalness > 30%
- latency: 2 min to GCN notices

### IceCube-170922A (in GCN Circ. 21916)

- counterpart in X-rays and optics: TXS 0506+056
- blazar with typical accretion disk and dusty torus
- flaring state at time of neutrino emission
- additional neutrino flare (3.5  $\sigma$ ) found in archival data w/o  $\gamma$ -counterpart

### **Current status**

- 58 analyses performed 2016 – 2020, more stud <sup>3</sup>/<sub>2</sub> since

- typical latency is a few days. pollmann@chiba-u.jp











# Implications of first neutrino sources

- NGC1068 and TXS0506-056 are different source classes
  - TXS:
    - blazar, > 1Gpc
    - leptonic processes can explain all optical signals (synchroton self-Compton scattering)
  - NGC:
    - radio galaxy, nearby AGN (14.4 Mpc)
    - opaque to high energy γ-rays
- Active Galactic Nuclei may contribute significantly to extragalactic neutrino flux
- NGC energy smaller 6 spectral index softer than diffuse v: there might be more accessible high-energy astrophysical neutrino sources

 $10^{-9}$ 

 $10^{-11}$ 

 $E_{\nu}^{2}\Phi_{\nu+\nu'}^{+}$  10<sup>-13</sup>







- brightest GRB of all time, z = 0.151
- highest energy photon (LHAASO) at around 18
  TeV / first above 10 TeV (Huang et al. GCN 32677)
- ~325 sec, i.e. long-duration GRB, likely triggered by core collapse of a super-massive star
- Fast Response Analysis by IceCube: no neutrino emission found in -1 day to +2 days (Thwaites et al. GCN Circular 32665)
- 4 further studies
  - covering different energy ranges from MeV to PeV
  - 300 sec to 14 days
- giving constraints on some acceleration models (Murase et al. 2022, Liu et al. 2022, Rudolph et al. 2022) pollmann@chiba-u.jp



15



- brightest GRB of all time, z = 0.151
- highest energy photon (LHAASO) at around 18
  TeV / first above 10 TeV (Huang et al. GCN 32677)
- ~325 sec, i.e. long-duration GRB, likely triggered by core collapse of a super-massive star
- Fast Response Analysis by IceCube: no neutrino emission found in -1 day to +2 days (Thwaites et al. GCN Circular 32665)
- 4 further studies
  - covering different energy ranges from MeV to PeV
  - 300 sec to 14 days
- giving constraints on some acceleration models (Murase et al. 2022, Liu et al. 2022, Rudolph et al. 2022) pollmann@chiba-u.jp





10-hour time lapse – Fermi LAT

- brightest GRB of all time, z = 0.151
- highest energy photon (LHAASO) at around 18
  TeV / first above 10 TeV (Huang et al. GCN 32677)
- ~325 sec, i.e. long-duration GRB, likely triggered by core collapse of a super-massive star
- Fast Response Analysis by IceCube: no neutrino emission found in -1 day to +2 days (Thwaites et al. GCN Circular 32665)
- 4 further studies
  - covering different energy ranges from MeV to PeV
  - 300 sec to 14 days
- giving constraints on some acceleration models (Murase et al. 2022, Liu et al. 2022, Rudolph et al. 2022) pollmann@chiba-u.jp



15



- brightest GRB of all time, z = 0.151
- highest energy photon (LHAASO) at around 18
  TeV / first above 10 TeV (Huang et al. GCN 32677)
- ~325 sec, i.e. long-duration GRB, likely triggered by core collapse of a super-massive star
- Fast Response Analysis by IceCube: no neutrino emission found in -1 day to +2 days (Thwaites et al. GCN Circular 32665)
- 4 further studies
  - covering different energy ranges from MeV to PeV
  - 300 sec to 14 days
- giving constraints on some acceleration models (Murase et al. 2022, Liu et al. 2022, Rudolph et al. 2022) pollmann@chiba-u.jp



15



- brightest GRB of all time, z = 0.151
- highest energy photon (LHAASO) at around 18
  TeV / first above 10 TeV (Huang et al. GCN 32677)
- ~325 sec, i.e. long-duration GRB, likely triggered by core collapse of a super-massive star
- Fast Response Analysis by IceCube: no neutrino emission found in -1 day to +2 days (Thwaites et al. GCN Circular 32665)
- 4 further studies
  - covering different energy ranges from MeV to PeV
  - 300 sec to 14 days
- giving constraints on some acceleration models (Murase et al. 2022, Liu et al. 2022, Rudolph et al. 2022) pollmann@chiba-u.jp



15



- brightest GRB of all time, z = 0.151
- highest energy photon (LHAASO) at around 18
  TeV / first above 10 TeV (Huang et al. GCN 32677)
- ~325 sec, i.e. long-duration GRB, likely triggered by core collapse of a super-massive star
- Fast Response Analysis by IceCube: no neutrino emission found in -1 day to +2 days (Thwaites et al. GCN Circular 32665)
- 4 further studies
  - covering different energy ranges from MeV to PeV
  - 300 sec to 14 days
- giving constraints on some acceleration models (Murase et al. 2022, Liu et al. 2022, Rudolph et al. 2022) pollmann@chiba-u.jp



15



- brightest GRB of all time, z = 0.151
- highest energy photon (LHAASO) at around 18
  TeV / first above 10 TeV (Huang et al. GCN 32677)
- ~325 sec, i.e. long-duration GRB, likely triggered by core collapse of a super-massive star
- Fast Response Analysis by IceCube: no neutrino emission found in -1 day to +2 days (Thwaites et al. GCN Circular 32665)
- 4 further studies
  - covering different energy ranges from MeV to PeV
  - 300 sec to 14 days
- giving constraints on some acceleration models (Murase et al. 2022, Liu et al. 2022, Rudolph et al. 2022) pollmann@chiba-u.jp



15



- brightest GRB of all time, z = 0.151
- highest energy photon (LHAASO) at around 18
  TeV / first above 10 TeV (Huang et al. GCN 32677)
- ~325 sec, i.e. long-duration GRB, likely triggered by core collapse of a super-massive star
- Fast Response Analysis by IceCube: no neutrino emission found in -1 day to +2 days (Thwaites et al. GCN Circular 32665)
- 4 further studies
  - covering different energy ranges from MeV to PeV
  - 300 sec to 14 days
- giving constraints on some acceleration models (Murase et al. 2022, Liu et al. 2022, Rudolph et al. 2022) pollmann@chiba-u.jp



15



- brightest GRB of all time, z = 0.151
- highest energy photon (LHAASO) at around 18 TeV / first above 10 TeV (Huang et al. GCN 32677)
- ~325 sec, i.e. long-duration GRB, likely triggered by core collapse of a super-massive star
- Fast Response Analysis by IceCube: no neutrino emission found in -1 day to +2 days (Thwaites et al. GCN Circular 32665)
- 4 further studies
  - covering different energy ranges from MeV to PeV
  - 300 sec to 14 days
- giving constraints on some acceleration models (Murase et al. 2022, Liu et al. 2022, Rudolph et al. 2022) pollmann@chiba-u.jp







### IceCube Gen-2

- analyses of astrophysical neutrinos heavily limited by statistics
- aim to increase effective area by factor of ~10
  - by larger volume
  - more effective veto strategies
  - better sensors
- targeting 2030





## Summary and outlook



- 1 decade of astrophysical diffuse neutrino flux slowly narrowing the flux properties
- first evidences for sources  $\rightarrow$  starting to derive source properties
  - blazar TXS 0506+056 (during & without flare)
  - nearby Seyfert galaxy NGC1068
- multi-messenger astronomy: real-time alarms, follow-ups and fast response analyses established (GW not covered today) pollmann@chiba-u.jp











# First astrophysical neutrinos

First observation (2013)



nlloq



### Glashow resonance

Hydrangea

- Partially contained
- Detected muon from faster than Cherenkov cone
- 5.9±0.2 PeV





**Glashow Resonance** 







### Neutrino production





### Tau neutrino identification

### **Double Double**

### - newly discovered tau neutrino candidate





## "Double bang" is rare (~50m xE/1PeV)



Double pulse can be found using timing information.

Improved tau PID algorithm is used for the flavour ratio



# Alert follow up for TXS



