LLRF simulation update

O. Bourrion, Ch. Vescovi

IN2P3/LPSC Grenoble

May 31, 2011

Table of Contents

1 Introduction

- Instabilities and feedbacks reminder
 - Instabilities and cavity impedance
 - Direct RF feedback
 - One turn delay feedback
 - LLRF feedback overview

- Coupled cavity model
- Klystron load
- Beam/cavity interaction
- 4 Time domain simulation
 - Description

Introduction

Instabilities and feedbacks reminder Time domain models Time domain simulation Conclusions

Table of Contents

1 Introduction

- Instabilities and feedbacks reminder
 - Instabilities and cavity impedance
 - Direct RF feedback
 - One turn delay feedback
 - LLRF feedback overview

- Coupled cavity model
- Klystron load
- Beam/cavity interaction
- 4 Time domain simulation
 - Description

Introduction

Instabilities and feedbacks reminder Time domain models Time domain simulation Conclusions

Introduction

- In the XIV SuperB General Meeting a frequency domain simulation was presented, BUT:
 - Difficulty to access to the temporal response
 - How to include the non-linearities (klystron, preamplifier)?
 - Effect of the gap transient on cavity voltage, power demand?
 - Effect of the operating point on the loop stability (detuning, position on the klystron saturation curve, ...)?
- Need a time domain model!
- $\bullet~$ Using ideas developed for PEP2 $\rightarrow~$ model under construction

Instabilities and cavity impedance Direct RF feedback One turn delay feedback LLRF feedback overview

Table of Contents

Introduction

- Instabilities and feedbacks reminder
 - Instabilities and cavity impedance
 - Direct RF feedback
 - One turn delay feedback
 - LLRF feedback overview

- Coupled cavity model
- Klystron load
- Beam/cavity interaction
- 4 Time domain simulation
 - Description

Instabilities and cavity impedance Direct RF feedback One turn delay feedback LLRF feedback overview

Instabilities and cavity impedance

Instabilities_growth rates proportionnal to the cavities impedance:

$$\tau_l^{-1} \approx \frac{eI_B F_{rf} \alpha}{2EQ_s} \left[Re \ Z_c(\omega_{rf} + I\omega_{rev} + \omega_s) - Re \ Z_c(\omega_{rf} - I\omega_{rev} - \omega_s) \right]$$

• Applying this to the detunned cavity impedance yields:

Mode -1 growth rate is 33 ms⁻¹ (baseline LER)

• Exceed the radiation damping rate (LER damping time =20.3 ms) $(1/\tau_{-1})/(1/\tau_d)\sim 670$

Instabilities and cavity impedance Direct RF feedback One turn delay feedback LLRF feedback overview

Direct RF feedback (1/2)

• In theory the highest gain GA is desired:

- $\bullet\,$ Maintain loop stability \to Phase Margin is impacted by loop delay
- Canonical value of $PM = \pi/4$ yields

$$GAR \leq rac{Q}{\omega_r} rac{rac{\pi}{4T} + 2\omega_r}{1 + \omega_r rac{4T}{\pi}} = G_{max}AR$$

• Impedance reduction limited by the loop delay T

Instabilities and cavity impedance Direct RF feedback One turn delay feedback LLRF feedback overview

Direct RF feedback (2/2)

• Plots with loop gain = $1.3 \times G_{max}AR$ (flat response) and T=440 ns (PEP2 delay value)

- Maximum impedance decreased by a factor of 12.8
- -1 Mode is damped by a factor of 20
- Side effect: other modes growth rates are increased!
- More impedance reduction is needed

Instabilities and cavity impedance Direct RF feedback One turn delay feedback LLRF feedback overview

Comb filter feedback principle

- Overcome loop delay limitation
- Correction applied with one turn delay
- Minimize impedance at certain frequencies
- \bullet Attenuation needed at synchrotron sidebands \rightarrow dual peaked comb filter
- $\bullet\,$ Out of klystron bandwidth, large dephasing \rightarrow loop instability
 - $\bullet~$ Requires precompensation of the dephasing $\rightarrow~$ phase equalizer
- $\bullet\,$ Limitation comes from the gain margin of 10 dB at $\phi=\pi$
- The higher the comb gain the narrower the bandwidth
 - Must still cover the synchrotron bandwidth!

Instabilities and cavity impedance Direct RF feedback One turn delay feedback LLRF feedback overview

Frequency domain simulations

 $\begin{array}{c} {\rm K}{=}127/128 \\ {\rm 33\ ms^{-1}} \rightarrow \\ {\rm 0.05\ ms^{-1}} \end{array}$

K=63/64

O. Bourrion, Ch. Vescovi

LLRF simulation updates

Coupled cavity model Klystron load Beam/cavity interaction

Table of Contents

Introduction

- Instabilities and feedbacks reminder
 - Instabilities and cavity impedance
 - Direct RF feedback
 - One turn delay feedback
 - LLRF feedback overview

- Coupled cavity model
- Klystron load
- Beam/cavity interaction
- Time domain simulationDescription

Coupled cavity model Klystron load Beam/cavity interaction

Coupled cavity model

- Inductive coupling:
 - $n^2 = \frac{Z_2}{Z_1} = \frac{L}{L_1}$ • $n = \frac{U_{cav}}{U_1} = \frac{I_1}{I_2}$ • $\beta = \frac{R_s}{n^2 R_0}$

•
$$R_I = \frac{R_s}{(1+\beta)}, Q_I = \frac{Q}{(1+\beta)},$$

 $\omega_r = \frac{1}{\sqrt{LC}}$

•
$$Y(\omega) = \frac{\beta+1}{R_s} + j \left(\omega C - \frac{1}{\omega L}\right)$$

• $Z(s) = \frac{R_I \frac{\omega_r}{Q_I} s}{s^2 + \frac{\omega_r}{Q_I} s + \omega_r^2}$
• $\frac{d^2 V_c}{dt^2} + \frac{\omega_r}{Q_I} \frac{V_c}{dt} + \omega_r^2 V_c = \frac{R_I \omega_r}{Q_I} \frac{dI_c}{dt}$

- \bullet High intensity beam \rightarrow cavity voltage perturbated by I_B
- Objective: maintain constant V_C
 - I_G contribution should compensate I_B
 - Modulation of $I_B \rightarrow \text{modulation } I_G$

Coupled cavity model Klystron load Beam/cavity interaction

Cavity baseband model

• For faster simulation, cavity model is ported at baseband and modeled as a set of 2 complex equations

$$\frac{dV_{cr}}{dt} = -\frac{\omega_r}{2Q_l}V_{cr} - \Delta\omega V_{ci} + R_l \frac{\omega_r}{2Q_l}I_r$$
(1)

$$\frac{dV_{ci}}{dt} = \Delta\omega V_{cr} - \frac{\omega_r}{2Q_I} V_{ci} + R_I \frac{\omega_r}{2Q_I} I_i$$
(2)

• Using state space representation (easy to implement in simulators)

$$\frac{d}{dt} \begin{bmatrix} V_{cr} \\ V_{ci} \end{bmatrix} = \begin{bmatrix} -\frac{\omega_r}{2Q_l} & -\Delta\omega \\ -\Delta\omega & -\frac{\omega_r}{2Q_l} \end{bmatrix} \begin{bmatrix} V_{cr} \\ V_{ci} \end{bmatrix} + R_l \frac{\omega_r}{2Q_l} \begin{bmatrix} I_r \\ I_i \end{bmatrix}$$
(3)

Coupled cavity model Klystron load Beam/cavity interaction

Klystron load - reflected power

• Reflection coefficient
$$\rho = \frac{\beta - 1 - \frac{R_s I_b}{V_{Cav}} \cos \phi_s - jR_s \left(\frac{\delta Q}{R} + \frac{I_b}{V_{Cav}} \sin \phi_s\right)}{\beta - 1 - \frac{R_s I_b}{V_{Cav}} \cos \phi_s + jR_s \left(\frac{\delta Q}{R} + \frac{I_b}{V_{Cav}} \sin \phi_s\right)}$$

• β optimized for nominal current $\beta = \left(1 + \frac{R_s |\vec{I_B}|}{|\vec{V_{cav}}|} \cos \phi_s\right)$

• Cavity optimal tuning $\delta = -\frac{R}{Q} \frac{I_b}{V_{cav}} \sin \phi_s = -N_c \frac{R}{Q} \frac{I_b}{V_{acc}} \sin \phi_s$

• Klystron delivered power $P_{out} = P_{FWD} + P_{REF} = \frac{V_{FWD}^2}{Z_0} + \frac{V_{REF}^2}{Z_0}$

•
$$I_g = rac{1}{n} rac{V_{FWD}}{Z_0}$$
, where $n = \sqrt{rac{R_s}{eta Z_0}}$

Coupled cavity model Klystron load Beam/cavity interaction

Beam/cavity interaction

Longitudinal dynamics

• Oscillations around the synchronous phase described by:

$$\ddot{\tau}_n + 2d_r\dot{\tau}_n - \alpha \frac{eV_{rf}(\tau_s + \tau_n) - U_0}{E_0 T_{rev}} = 0$$

- τ_s is the synchronous particle time arrival
- τ_n the time deviation of the bunch *n* from the synchronous time
- One equation per bunch! But mode count = bunch count
- \Rightarrow Use macro bunches (30 instead of 978 bunches for LER baseline)

Macro-cavity

- One klystron supplying one macrocavity is considered:
- $V_{acc} = N_c \times Z_{cav} \times [I_{beam} + I_g]$
- Simulation performed at baseband, each bunch features:
 - An amplitude (used to model gap transient)
 - A phase ϕ (= $\phi_s + \phi_n = \omega_{rf}\tau_s + \omega_{rf}\tau_n$)

Coupled cavity model Klystron load Beam/cavity interaction

Beam dynamics in state space representation

• Equation in Laplace domain:

$$\tau_n = \alpha \frac{eV_{rf}(\tau_s + \tau_n) - U_0}{E_0 T_{rev}} \frac{1}{p^2 + 2d_r p}$$
(4)

• State space:

$$\frac{dx(t)}{dt} = \begin{bmatrix} -2dr & 0\\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1\\ 0 \end{bmatrix} (eV_{rf}(\tau_s + \tau_n) - U_0)$$
(5)
$$\tau_n = \begin{bmatrix} 0 & \frac{\alpha}{E_0 T_{ray}} \end{bmatrix} x(t)$$
(6)

Where $V_{rf}(\tau_s + \tau_n)$ is the in-phase (I) part of the cavity voltage at the macrobunch arrival time

• Macrobunch current phase: $\phi_n = \omega_{rf} \tau_n$

Description

Table of Contents

Introduction

- Instabilities and feedbacks reminder
 - Instabilities and cavity impedance
 - Direct RF feedback
 - One turn delay feedback
 - LLRF feedback overview

- Coupled cavity model
- Klystron load
- Beam/cavity interaction
- Time domain simulation
 - Description

Description

Time domain simulation

- Effect of non optimal detuning (klystron power)
- Klystron non-linearity effect (can be corrected in the FPGA)
- Small signal driver transfer function (was non linear in PEP2)
- Blocks in orange are not modeled yet (see next slide)

Time domain simulation

Blocks not yet simulated

- Klystron BW \rightarrow phase equalizer (number of damped modes)
- Waveguide voltage envelope, simulate beamloss at full detuning
- Gap feedforward to limit the gap transient effect
- Driver small signal transfer function (see next slide)

Loops not simulated

- Cavity tuning loops (slow, fixed detuning $\Delta \omega$ is used per simulation)
- Gap voltage loop (slow, minimizes the error at fundamental RF between gap and Vref)
- Klystron anti saturation loop (slow, fixed working point)
- Klystron phase noise cancellation loop

Expected benefit

 $\bullet~{\rm Growth/damping~rates} \to {\rm for~each~turn,~FFT}$ of the recorded bunch phases

Extracted from R. Tighe, RF feedback simulation results for PEP-II, PAC95

- Gap feed forward can be tested/adjusted
- Reflected power monitoring (during uncorrected gap transient or beam loss)
- Effect of non-optimal detuning

Description

Lesson from PEP2, watch the driver!

• Influence of the klystron driver, tested with a two tones modulation (RF carrier + small signal)

Extracted from Phys.Rev.ST Accel.Beams 13:052802,2010

Table of Contents

Introduction

- Instabilities and feedbacks reminder
 - Instabilities and cavity impedance
 - Direct RF feedback
 - One turn delay feedback
 - LLRF feedback overview

- Coupled cavity model
- Klystron load
- Beam/cavity interaction
- 4 Time domain simulation
 - Description

Conclusion

- A tool to understand operational limitation (non-linear effects, non optimal detuning, ...)
- Simulation building blocks are ready
- Technical implementation in progress
- All blocks can be adapted with real system response (driver, klystron BW and saturation, ...)
- Availability of the klystron transfer function (it was measured for PEP2)?
- Using frequency domain simulation, the highest growth rate was about 0.05 ms⁻¹, to be compared to time-domain simulation as the model complexity increases

