Test Beam Results on Focusing

Aerogel

A.Yu.Barnyakov, M.Yu.Barnyakov, I.Yu.Basok, V.E.Blinov, V.S.Bobrovnikov, A.A.Borodenko, A.R.Buzykaev, A.F.Danilyuk, V.V.Gulevich, S.A.Kononov, E.A.Kravchenko, I.A.Kuyanov, A.P.Onuchin, I.V.Ovtin, A.A.Talyshev

Budker Institute of Nuclear Physics, Novosibirsk Boreskov Institute of Catalysis, Novosibirsk

Outline

- Test beam facility
- Aerogel and photodetectors description
- Test beam measurements
- Recalculation for SuperB FARICH based on test beam results.
- Plans

Test beam experiment

- Test beam parameters:
- "Converter mode", ~10 mA, 3.5 GeV beam in VEPP-4M, -- $\quad-50 \mathrm{~Hz}$ of 1.3 GeV secondary electrons (3 GeV maximum)
- $50 \times 15 \mathrm{~mm}^{2}$ beam crossection (defined by trigger counter dimentions)
- $\sim 0.5 \mathrm{~mm}$ track spatial resolution

Test beam line

Aerogel sample

	n	h, mm
Layer 1	1.050	6.2
Layer 2	1.041	7.0
Layer 3	1.035	7.7
Layer 4	1.030	9.7

- $100 \times 100 \times 31 \mathrm{~mm}^{3}$
- Lsc(400nm)=43 mm
- $n^{2}=1+0.438^{*} \rho$

MRS APD Parameters

- Producer - Center of Perspective Technology and Apparatus CPTA, Moscow http://www.spta-apd.ru/
- Genuine name - MRS APD (other names: silicon photomultiplier, PPD,MPPC...)
- $2.1 \times 2.1 \mathrm{~mm}$ sensor
- $4 \times 4 \mathrm{~mm}$ case size
- PDE=40\% @ 600 nm (?)
- Gain $~ 4-10^{5}$
- Time resolution $\sim 100 \mathrm{ps}$
- Dark counts $-5--10 \mathrm{MHz}$ (0.5pe threshold)

Photodetectors layout

Electrons could pass at different distances from SiPM.

Event selection

Hits in SiPM \#14

- We select events with $\left|t-t_{c h}\right|<3 \sigma_{t}$

Cherenkov ring radius measurement(1)

(X,Y)hit-(X,Y)track

$R^{2}=\left(X_{\text {hit }}-X_{\text {track }}\right)^{2}+\left(Y_{\text {hit }}-Y_{\text {track }}\right)^{2}$

Density of photoelectrons on radius for SiPM \#14

Cherenkov ring radius measurement(2)

Difference between σ_{r} and $\sigma_{r}(\operatorname{sim})$ comes mainly from track resolution ($\sim 0.5 \mathrm{~mm}$)

$22.1-21.5=0.6 \mathrm{~mm}->2.7 \%$ Position accuracy -> 1.7\% error in $\mathrm{n}_{\text {aerogel }}$ from dencuty $\rightarrow>$

What PID will be at SuperB with such aerogel?

- Pure Gaussian + flat background (from randome coincedence with G-APD noise) at least in $\pm 5 \sigma$ region.
- $\sigma_{r}^{2}=\sigma_{\text {aerogel }}{ }^{2}+\sigma_{\text {pixel }}{ }^{2}+\sigma_{\text {track }}{ }^{2}$
- $\sigma_{\text {aerogel }}^{\prime}=\operatorname{sqrt}\left(\sigma_{r}^{2}-\sigma_{\text {pixel }}{ }^{2}\right)$

$$
=\operatorname{sqrt}\left(1.09^{2}-2.1^{2} / 12\right)=0.91 \mathrm{~mm}
$$

PID with $\sigma_{\text {aerogel }}^{\prime}=0.91 \mathrm{~mm}$ and 6 mm pixel.
Estimation of lower limit of PID.

Plans

- Continue data analysis collected during test beam experiment.
- List of measured samples:
- 2 single layer aerogels
- 2 4-layer aerogels
- 1 2-layer aerogel
- water (5 mm)
- List of experiments:
- 3 to 5 positions in focusing mode
- 2 positions in defocusing mode
- surface scan of 4-layer aerogel
- Planacon PMTs
- Electronics

- Mechanics

Conclusion

- Test beam measurements of 4-layer aerogel give us a lot of information on focusing radiator
- Test beam results confirm earlier MC simulations.

Additional slides

Signal fit function

$$
\begin{gathered}
\frac{d N_{h i t}}{d x d y d x^{\prime} d y^{\prime}}\left(x, y, x^{\prime}, y^{\prime}\right)=\frac{d N_{t r k}}{d x d y}(x, y) \frac{d N_{\text {p.e. }}}{d x^{\prime} d y^{\prime}}\left(x^{\prime}-x, y^{\prime}-y\right), \\
x, y-\text { track coordinates; } \quad x^{\prime}, y^{\prime}-\text { photon coordinates }
\end{gathered}
$$

If we integrate on x^{\prime}, y^{\prime} over active area of a particular pixel and assume symmetry on φ, we deduce
$\frac{d N_{h i t}}{d x d y}(x, y) \approx \frac{d N_{t r k}}{d x d y}(x, y) S_{p x} \frac{d N_{p . e}}{d x^{\prime} d y^{\prime}}(r)=\frac{d N_{t r k}}{d x d y}(x, y) \frac{S_{p x}}{2 \pi r} \frac{d N_{p . e}}{d r}(r)$,
$r=\sqrt{\left(x_{p x}-x\right)^{2}+\left(y_{p x}-y\right)^{2}}$ - distance from pixel center to track,
$S_{p x}$-pixel active area.
In some cases p.e. distribution can be described by a gaussian:

$$
\frac{d N_{\text {p.e. }}}{d r}(r)=\frac{N_{\text {p.e. }}}{\sqrt{2 \pi} \sigma_{r}} \exp \left(-\frac{\left(r-r_{c}\right)^{2}}{2 \sigma_{r}^{2}}\right)
$$

Fitting procedure (1)

Break track and hit distributions in 2D bins: $N_{h i t}(i, j), N_{t r k}(i, j)$,
i, j - indices of bins on x and y with centers x_{i}, y_{j}
Mean number of hits $v_{\text {hit }}(i, j)$ is described by

$$
v_{h i t}(i, j)=N_{t r k}(i, j)\left(\frac{S_{p x}}{2 \pi r_{i j}} \frac{N_{p . e .}}{\sqrt{2 \pi} \sigma_{r}} \exp \left(-\frac{\left(r_{i j}-r_{c}\right)^{2}}{2 \sigma_{r}^{2}}\right)+B\right) \text {, }
$$

$r_{i j}$ - distance from bin center to pixel center
B - background parameter
$N_{\text {hit }}(i, j)$ is Poisson random number with mean $v_{\text {hit }}(i, j)$, hence we use likelihood function

$$
-\ln L=\sum_{i, j}\left(v_{h i t}(i, j)-N_{h i t}(i, j) \ln v_{h i t}(i, j)\right) .
$$

By the fit we determine parameters: $N_{\text {p.e. }}, r_{c}, \sigma_{r}, B, \Delta X, \Delta Y$, for each pixel (channel).
$\Delta X, \Delta Y$ - shift of FARICH r.f. relative to DCH r.f.

Fitting procedure (2)

- Also we can do a global fit for all channels with common parameters $r_{c}, \sigma_{r}, \Delta X, \Delta Y$
- Having determined r.f. shift, we can build hit and track distributions on radius $N_{\text {hit }}\left(r_{i}\right), N_{t r k}\left(r_{i}\right)$ and fit them:

$$
\frac{d N_{p . e}}{d r}\left(r_{i}\right)+\frac{2 \pi r B}{S_{p x}}=\frac{2 \pi r N_{h i t}\left(r_{i}\right)}{S_{p x} N_{t r k}\left(r_{i}\right)} .
$$

- Background is not very well fitted with single parameter B in a large area $30 \times 15 \mathrm{~mm}$ of track positions for some channels. Probable reasons:
- Cross-talks between channels
- Non-linearities in DCH track position determination
\rightarrow Use fits on radius in a narrower region $\pm 5 \sigma_{\mathrm{r}}$ around the ring.

Number of photoelectrons (4-layer)

Discrepancy between Npe in simulation and experiment could be explained by:

- real detection efficiency of G-APDs is smaller than in data book
- electronics miscount

Number of photoelectrons (1-layer)

Discrepancy between Npe in simulation and experiment could be explained by:

- real detection efficiency of G-APDs is smaller than in data book
- electronics miscount

Single layer vs 4-layer aerogel

Single layer aerogel measurement

- 'Focusing' effect - 3 times decrease in ring width :
- 2 cm thickness, single layer $->$ or=2.1 mm
- 3 cm thickness, 4 layer -> $\sigma r=1.1 \mathrm{~mm}$

Defocusing measurements, 2-layer block

- Such measurements give direct answer what is the index of refraction of each layer.

FARICH layout

- MCP PMT photodetectors Photonis XP85012
- Radiator - Focusing Aerogel + NaF

layer	marerial	$\mathrm{n}(400 \mathrm{n}$ $\mathrm{m})$	t, mm
$\mathbf{1}$	aerogel	1.039	16.2
2	aerogel	1.050	13.8
3	NaF	1.332	5.0

- $\mathrm{X} / \mathrm{XO}=2.4 \%($ aerogel $)+4.3 \%(\mathrm{NaF})$ + 10\%(PMT) + ~ 8\%
(support,FEE,cooling) $\approx 25 \%$

Photodetector

Monte Carlo Simulation

Number of photoelectrons

π / K separation of FARICH in comparison with FDIRC and DCH

K/p separation of FARICH in Comparison with DCH

Cost estimation

Component	Unit price, kEuro	Cost, kEuro
Photonis MCP PMT*	6.5	2300
2-layer aerogel	3.0	400
NaF	2.0	200
Electronics		300
Mechanics		100
R\&D		100
Total		3400

(*) - based on price of PMTs with 25 mkm MCPs

Test beam apparatus

Electronics

- Fast FPGA are used as TDC:
- Smaller number of components - it is easier to fit FARICH electronics into available space
- zero dead time
- Flexible logic
- Commercially available
- Low cost (~0.5 Euro/channel)
- FE ASIC - several candidates:
- NINO13 (new version, designed for use with pixel MCP PMTs!)
- DIRC ASIC

Matthieu Despeisse et.al.,
"Low-Power Amplifier-Discriminators
For High Time Resolution Detection",
IEEE TRANSACTIONS ON NUCLEAR
SCIENCE, VOL. 56, NO. 2, APRIL 2009

Electronics layout

One sector:

- 26 PMTs with 64 channels = 1664 channels
- FE ASIC (NINO13) - 5x7 mm frame, 8 channels, 1664/8 = 208 chips on board
- FPGA TDC (Cyclone III) - 23x23 mm frame, 60 channels, 1664/60 - 28 chips on board
- 10 Gb optical link(XFP)

Is it possible to fit all this on single PCB or we need 2 PCBs?

Electronics layout (front view)

- 50 W heat dissipation per PCB

\square water cooling

Electronics layout (side view)

- We need only one PCB for signal digitization and readout
- Aluminum cooling board with water channels is coupled to PCB. 1 mm thickness (1% of X0)
- Separate connector board for each PMT is foreseen. It is used also to arrange HV divider.
- 46 mm total thickness
- Radiation hardness of FPGAs need to be investigated:
- Total dose and particle flux in the forward?
- Radiation hardness of Cyclone III and other FPGAs

