

Hybrid pixel developments for the ALICE Inner Tracking System upgrade

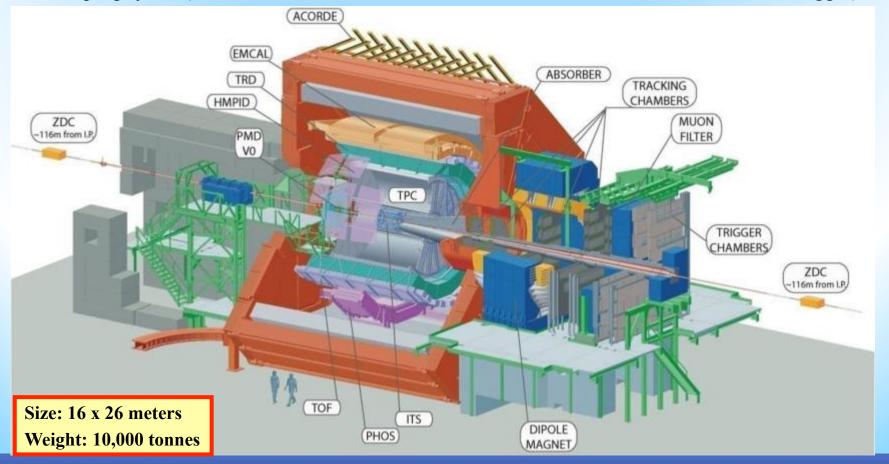
XVII SuperB Workshop and Kick Off meeting

Vito Manzari - INFN Bari (vito.manzari@cern.ch)

Outline

- * Introduction
- ITS upgrade
- * Hybrid Pixel R&D activities:
 - Thin planar sensor
 - Thin active edge planar sensor
 - Front-end chip thinning
 - Polyimide MicroChannel cooling
- Conclusions

The ALICE experiment



► Ultra-relativistic nucleus-nucleus collisions

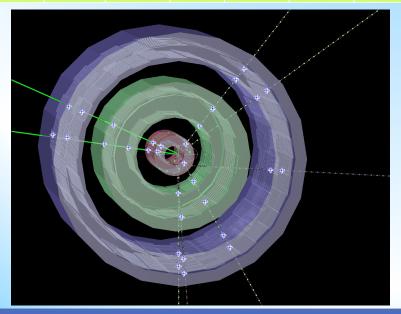
- study behavior of strongly interacting matter under extreme conditions of compression and heat

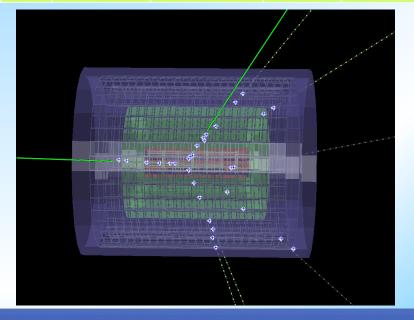
> Proton-Proton collisions

- reference data for heavy-ion program
- unique physics (momentum cutoff < 100MeV/c, excellent PID, efficient minimum bias trigger)

The ALICE Inner Tracking System

- ➤ 6-layer barrel
- ➤ 3 different silicon detector technologies, 2 layers each (inner → outer):
 - Pixels (SPD), Drift (SDD), double-side Strips (SSD)





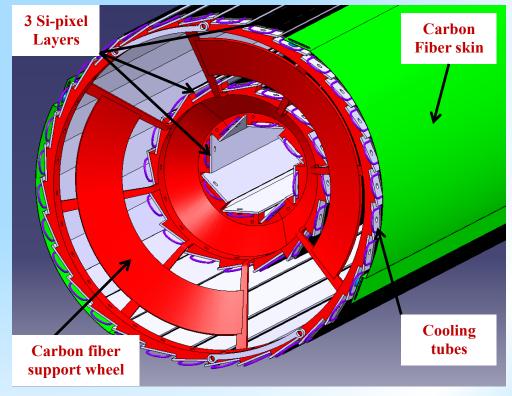
The ALICE Inner Tracking System

Layer	Det.	Radius (cm)	Lengt h (cm)	Surface (m²)	Chan.	n. Spatial precision (μm)		Cell (µm²)	Max occupancy central PbPb	Power dissipation (W)	
						rφ	Z		(%)	barrel	end-cap
1	SPD	3.9	28.2	0.21	9.8M	12	100	50x425	2.1	1.35k	30
2		7.6	28.2						0.6		
3	SDD	15.0	44.4	1.31	133K	35	25	202x294	2.5	1.06k	1.75k
4		23.9	59.4						1.0		
5	SSD	38.0	86.2	5.0	2.6M	20	830	95x40000	4.0	850	1.15k
6		43.0	97.8						3.3		

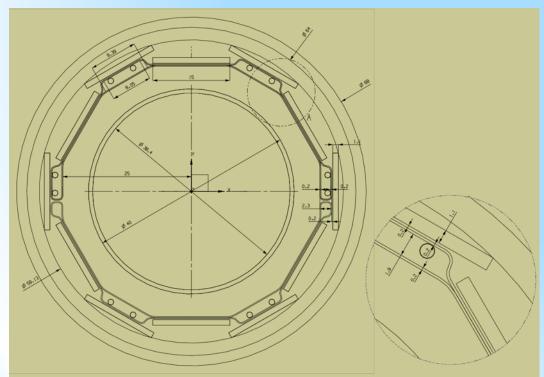


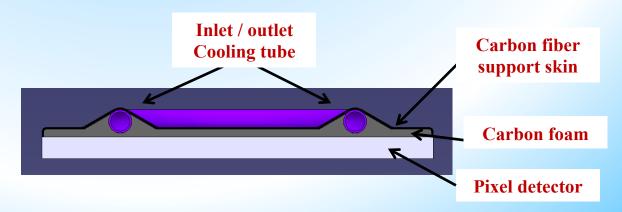
Pb-Pb event

ALICE ITS Upgrade


- Aims to extend the ALICE physics capabilities for the identification of short-lived particles containing heavy quarks through reconstruction and identification of the displaced vertex at mid-rapidity and enlarge the acceptance to larger rapidity
- \triangleright Improve the impact parameter resolution to ≈50 μm up to very low p_T
 - (1) Get closer to the Interaction Point
 - ✓ Radius of the innermost PIXEL layer < 25mm (at present 39mm)
 - reduce beam pipe radius to 20mm (at present 29mm)
 - 2 Reduce material budget, especially innermost layers (at present $\approx 1.1\% X_0$)
 - ✓ Reduce mass of silicon, power and signals bus, cooling, mechanics
 - ✓ Monolithic Pixels
 - 3 Reduce pixel size, mainly for medium/high p_T (at present 50 μ m x 425 μ m)
- > Improve standalone tracking and PID capabilities
- > Improve readout and trigger capabilities
- Acceptance at Forward and Backward rapidity
- Exchange/replacement capability and spatial mapping

Basic idea of the Pixel Barrel


- ➤ 3 layers of Si-pixel detectors
- As close as possible to the interaction
 - beam pipe radius = 20mm
 - innermost average radius = 23mm
- \triangleright Low material budget (< 0.5% X_0)
- \triangleright Acceptance $|\eta| = 1$
- ➤ Power consumption < 0.5 W/cm²
 - several cooling options
- > All services from one side
 - fast extraction (winter shutdown) for fixing


Basic idea of the Pixel Barrel

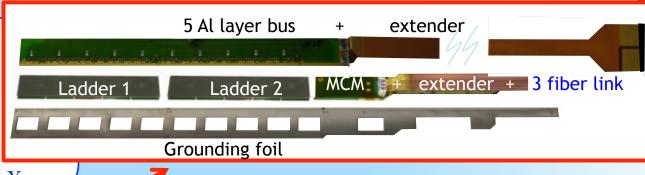
Innermost layer cross-section

Single module cross-section

Pixel Detector R&D

- ➤ Two main technologies are being evaluated for the Pixel Barrel:
 - Monolithic pixel detectors
 - MIMOSA, INMAPS, LePix
 - Lower material budget and larger area (low cost)
 - ✓ radiation tolerance and readout speed to be evaluated

Hybrid pixel detectors


- "State-of-the-art" of pixel detectors at LHC
- R&D
 - ✓ Material budget
 - thinning of the silicon substrates: sensor and front-end chip
 - reduce overlaps between modules: active edge, 3D
 - multilayer flex and cooling
 - ✓ Low cost bump-bonding
 - ✓ Low power FEE chip

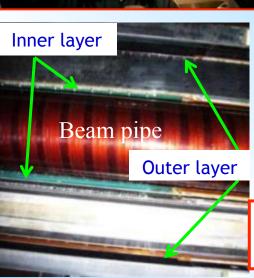
ALICE Pixel Overview

- ✓ 2 layer barrel
- ✓ Total surface: ~0.24m²
- ✓ Power consumption ~1.5kW
- \checkmark Evaporative cooling C_4F_{10}
- ✓ Room temperature
- ✓ Material budget per layer \sim 1% X_0

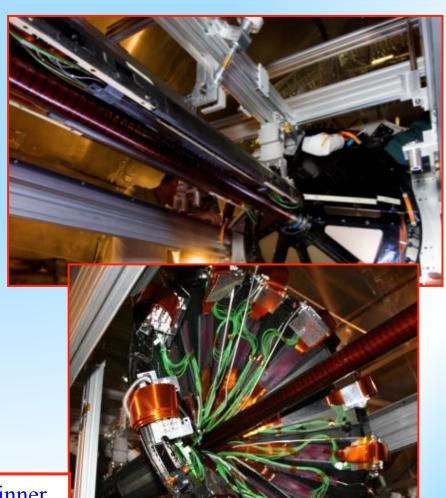
Outer surface: 80 half-staves

Half-stave

- ← 13.5 mm –
- ALICELHCb1 readout chip
- mixed signals
- 8192 cells
- 50x425μm²
- ~1200 wire-bonds
- > Unique L0 trigger capability
 - Prompt FastOR signal in each chip
 - Extract and *synchronize* 1200 FastOR signals from the 120 half-staves
 - User defined programmable algorithms



ALICE Pixel Overview



> The Silicon Pixel Detector was installed in ALICE in Jun'07

Minimum distance inner layer-beam pipe ≈5 mm

ALICE Pixel Material Budget

- ➤ Contributions to one current Pixel layer
 - Carbon fiber support: 200 μm
 - Cooling tube (Phynox): 40 µm wall thickness
 - Grounding foil (Al-Kapton): 75 μm
 - Silicon pixel chip: 150 μ m \rightarrow 0.16% X_0
 - Bump bonds (Pb-Sn): diameter ~15-20 μm
 - Silicon sensor: 200 μ m \rightarrow 0.22% X_0
 - Multilayer Al/Kapton pixel bus: 280 μ m \rightarrow 0.48% X_0
 - SMD components
 - Glue (Eccobond 45) and thermal grease

Schematic cross section of one SPD layer

SMD

OLLE

PIXEL DETECTOR

OLLE

THERMAL GREASE

CARBON FIBER SUPPORT

Aluminium

Polyimide 12µ

Two main contributors: silicon and multilayer flex (pixel bus)

V. Manzari - INFN Bari

Hybrid Pixel R&D: Material Budget

- ➤ How can the material budget be reduced?
 - Reduce silicon front-end chip thickness
 - Reduce silicon sensor thickness
 - Reduce interconnect bus contribution
 - reduce power
 - Reduce edge dead regions on sensor
 - reduce overlaps to avoid gaps
 - Review also other components
 - average contribution ~0.02%

Reduce frontend chip thickness

Chip

Bump bond

Sensor

Reduce insensitive area at sensor edge, reduce overlap of modules, avoid gaps

- ➤ What can be a reasonable target
 - Hybrid pixels overall material budget: $0.5 \% X_0$
 - \checkmark silicon: 0.16% X_0 overall (100 μ m sensor + 50 μ m front end chip), at present 0.38%
 - ✓ bus: $0.24\% X_0$, at present 0.48%
 - \checkmark others: 0.1% X_0 overall, at present 0.24%
 - Monolithic pixels: $0.3 \div 0.4\%$ X₀ (e.g. STAR HFT)

Hybrid Pixel R&D: Material Budget

- > To reduce the silicon contribution to the overall material budget Threefold activity
 - Thin Planar Sensor based on the current ALICE layout
 - ✓ bump-bonded to present ALICE front-end chip for testing
 - Thin Planar Active Edge Sensor based on the current ALICE layout
 - ✓ bump-bonded to present ALICE front-end chip for testing
 - Thinning the existing ALICE front-end chip
 - ✓ Bump-bonded to standard ALICE sensor 200 µm thick for testing
 - And then combine them

V. Manzari - INFN Bari

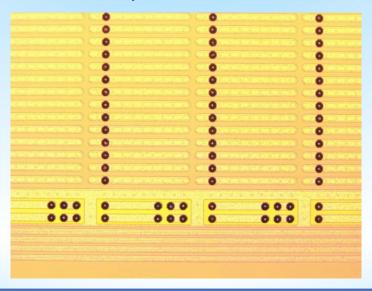
Hybrid Pixel R&D: Thin Planar Sensor

- ► Procurement, Processing and Handling of \approx 100µm thick wafers is an issue
- > Alternative:

Epitaxial Wafers to be thinned during the bump-bonding process

- Epitaxial wafers provide a mean to use very thin sensor wafers
 - carrier wafer "included for free"
- First tests of epitaxial sensors by PANDA (D. Calvo et al.) [see NIM A 595(2008)]

> ALICE Epi-Pixel sensor


- Goal: achieve a sensor thickness of 100 μ m (~ 0.11% X_0)
- Test with the ALICE pixel front-end chip (optimized for 200μm sensor)
- Epitaxial wafers produced by ITME (Poland)
 - Substrate thickness 525 μ m, doping n/Sb, resistivity 0.008-0.02 Ω cm, <111>
 - Epitaxial layer thickness 95-105 μ m, doping n/P, resistivity 2000 \pm 100 Ω cm

ALICE Epi-Pixel Sensor

- > 5 sensor wafers fabricated at FBK
- ➤ 3 wafers processed at VTT
 - successfully through all process steps, including thinning and back side patterning
 - Overall thickness: 105-115 μ m (i.e. epi layer + \approx 10 μ m)
- > 5 singles flip-chip bonded to the current ALICE pixel front-end chip
 - electrical tests: ~30 nA at 20V at RT, min. threshold ~ 1500 el., ~30 missing pixels

Beam Test of Epi-Pixel detector

- ➤ Beam test of ALICE Epi-Pixel detector
 - November 2010
 - CERN SPS: positive beam (pions, protons), 350 GeV/c, up to 10⁴ particles/spill
 - Duty cicle 49s, Flat top \approx 9s, Trigger rate \approx 3KHz
 - ALICE 3D-Pixel detector samples were also tested
 - Double-sided Double-Type Column (DDTC) from FBK multi-project wafer

> Tracking Telescope

- 4 ALICE standard Pixel detector arranged in 2 stations
 - each station contains 2 pixel detectors arranged in cross-geometry
 - \checkmark pixel cell dimensions 50 x 425 μ m²
 - Estimated tracking precision $\approx 10 \mu m$ both in x and y directions

>Trigger

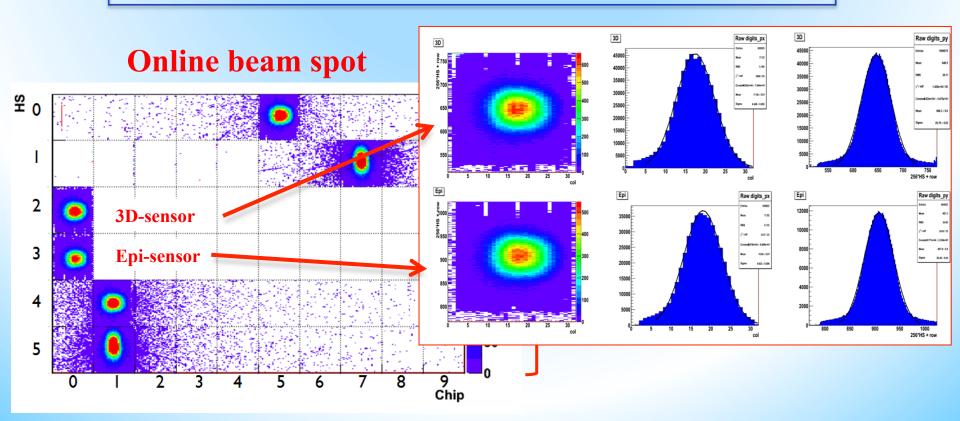
• Self-triggering: FastOr logic combining the information from the tracking planes

Beam Test Set-up

Single assembly mounted on test card

SPS beam test set-up

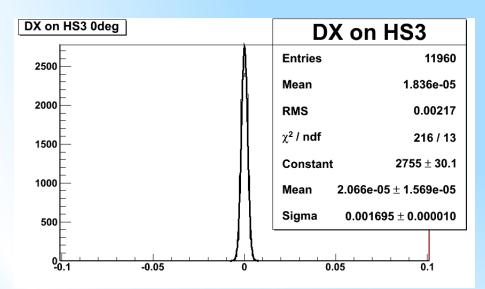
Beam Test Measurements

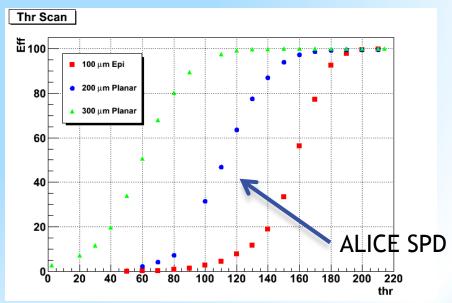


Objectives

VS

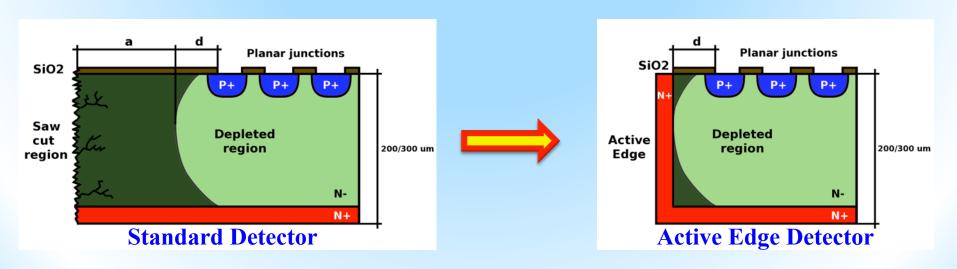
- Track Efficiency
- Cluster size
- Space accuracy


- Depletion Voltage
- Threshold
- Particle Crossing Angle



Residuals and Efficiency

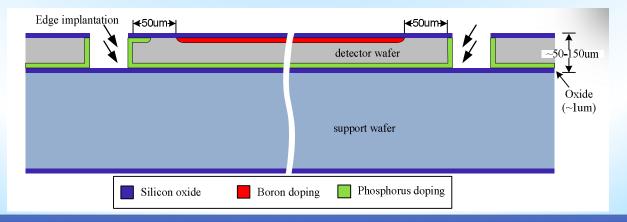
> NIM paper in preparation


Thr (DAC)	Thr (el.)
200	3000
190	3600
180	4200
170	4800

Planar Pixel Sensor with Active Edge

- > Standard detectors
 - Dead region (cracks and damages) $a + d \ge 500 \mu m$
- Active edge to limit dead region
 - Cut lines not sawed but etched with Deep Reactive Ion Etching (DRIE) and doped

> R&D in collaboration with FBK


- Within the MEMS2 agreement FBK-INFN
- Epitaxial wafer in order to achieve an Active Edge 100µm thick Planar Sensor

Main process steps and critical issues

- Attach support wafer
 - ✓ provides mechanical support after trench etching (SOI, wafer bonding, ...)
- Trench opening by Deep Reactive Ion Etching (DRIE)
 - ✓ dimensional aspect ~1/20, deep etching (200-230 μ m)
- Inside trench doping
 - ✓ solid source technology
- Trench filling with polysilicon
 - ✓ spin coating with standard photoresist is challenging due to trench
- Remove devices from support wafers (after bumping in case of pixel sensors)

TRENCH DEFINITION AND ETCHING

M. Boscardin

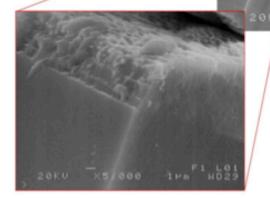
Trench Etching

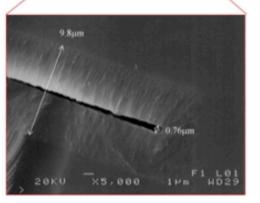
- DRIE process
- Depth:
 - ✓ Throughout the processed wafers, i.e. ~200 ÷ 250 µm
- Width:
 - √ ~5 μm
 - ✓ minimize the width of the trench
 to facilitate polysilicon filling

4,5μm wide 220μm deep

Capability to etch a trench more than 220micron deep and only 4,5micron wide

TECHNOLOGY: POLYSILICON TRENCH FILLING

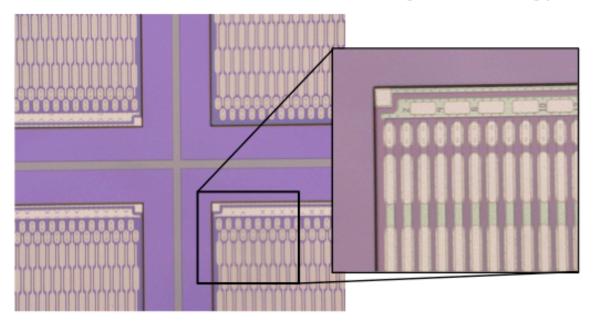

M. Boscardin


Process

- Define and etch trench
- Polysilicon deposition (trench filling)
- Remove the polysilicon from the wafer surface

Trench:

- 10µm wide
- 220µm deep

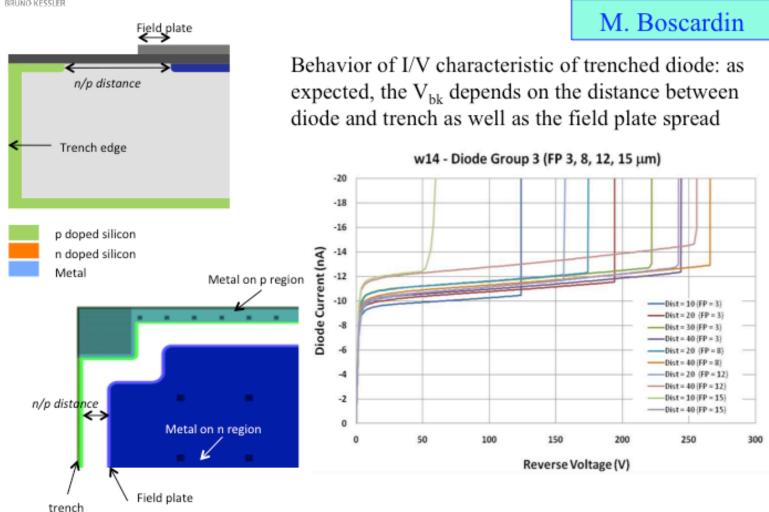


First FBK batch on active edge tecnology:

M. Boscardin

First batch at FBK on active edge technology

> For more infos see:

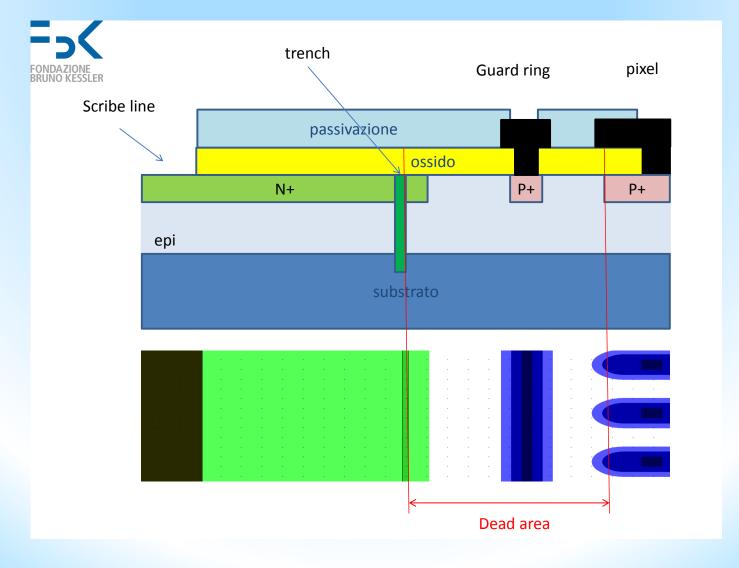

"Development of planar detector with active edge", M. Povoli et al. doi: 10.1016/j.nima.2011.04.050

First FBK batch on active edge tecnology

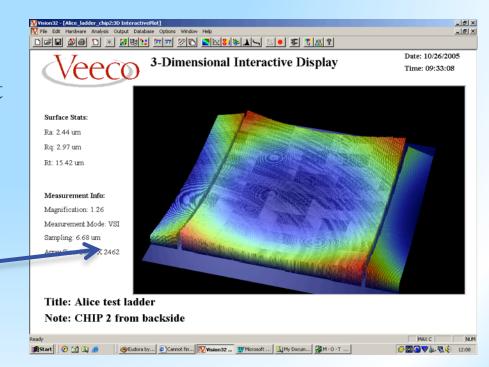

ALICE Pixel with Active Edge

- ➤ Recall ALICE Epi-Pixel detector
 - Planar pixel sensor on epitaxial high resistivity silicon wafer
 - ✓ Remove the bulk by back-grinding after the bumping to achieve a ~100 µm thick sensor

Combine with the capability to etch a trench to achieve an **Active Edge Thin** pixel


detector

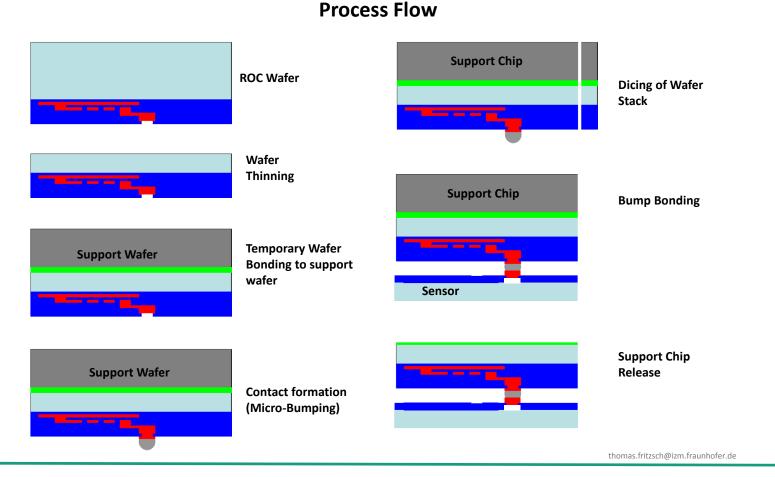
ALICE Pixel with Active Edge



- Current ALICE chips: 150 μm thinned during bump bonding process
- Thickness reduction will make inherent stresses come out stronger
- First experience during the ALICE production
- ➤ Thinning process needs to be well studied and tuned to produce coherent results

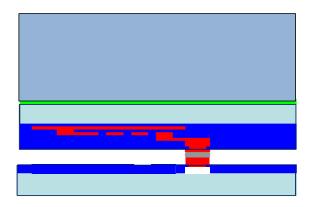
S. Vahanen, VTT

> Study using dummy components with IZM Berlin


- Hybrid detector dummy components, i.e sensors and chips, based on ALICE layout
- Specific IZM process for thinning:
 - Glass support wafer during full process
 - Laser release of the support wafer
- Sensor wafers (200 μm) in processing, ASIC wafers ready in 4 weeks
- First components back by end July 2011

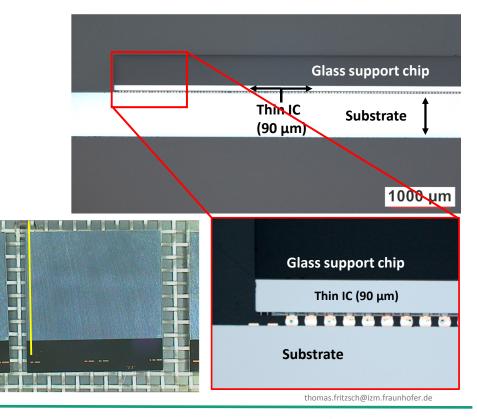
	Si sensor [µm]	X ₀ [%]	ASIC [µm]	X ₀ [%]	X _o total [%]
First R&D step	200	0.22	50	0.05	0.27
R&D target	100	0.11	50	0.05	0.16

Thin Chip Assembly – Temporary Support Approach



Thin Chip Assembly – Temporary Support Approach

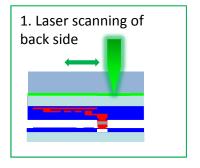
Laser Debonding using UV-Release Glue


1. Step: Flip Chip Assembly of Chipstack

Left: Chip after bump bonding size 14x11 mm² (2x1 FE-I3)

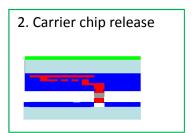
Right:

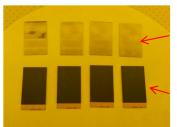
Cross section of the first bump row (yellow line)



Thin Chip Assembly – Temporary Support Approach

Laser Debonding using UV-Release Glue


2. Step: Support Chip Release

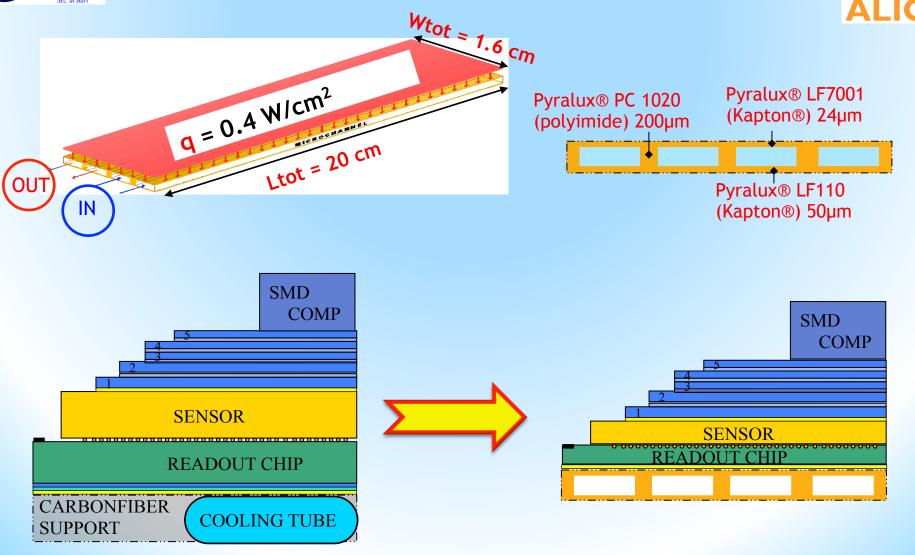


Side few on 14 x 11 cm² (Double ROC ATLAS FE-I2 reticle) dummy module after carrier chip release

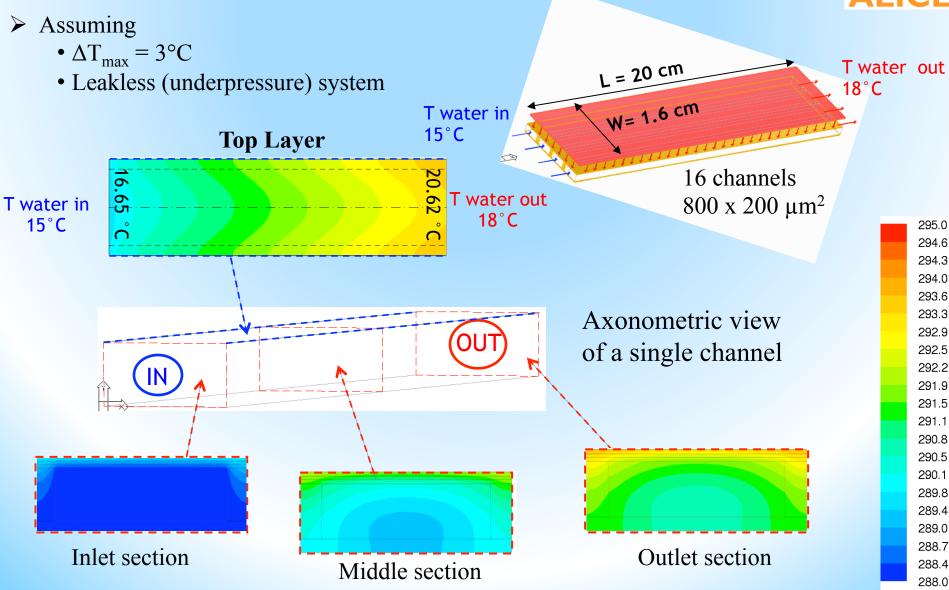
Released glass carrier chip

Thin chip module (ROC side down)

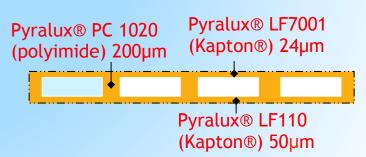
14 x 22 cm² (Quad ROC ATLAS FE-I2 reticles) dummy modules after carrier chip release

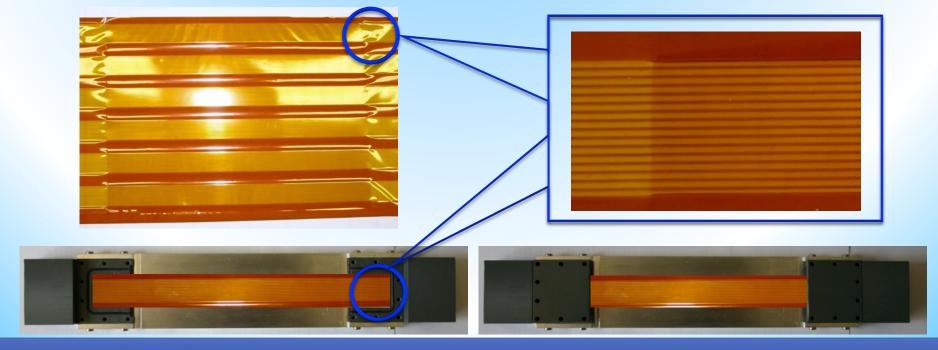

thomas.fritzsch@izm.fraunhofer.de

Polyimide MicroChannel cooling



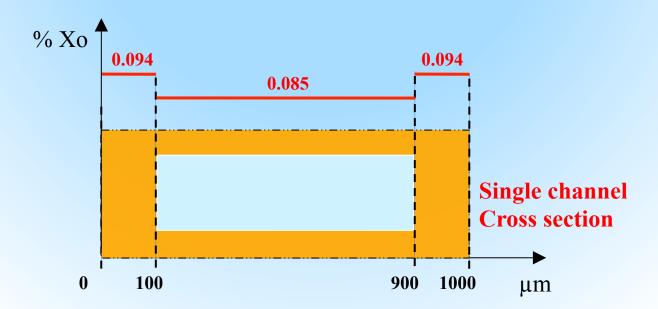
MicroChannel Simulation (Fluent 6.2)





MicroChannel Production

- ➤ Main fabrication process steps (R. De Oliveira, CERN TM-MPE-EM)
 - Sheet 50 μm of LF110
 - Lamination 200 μm photoimageable coverlay (4 layers of PC1020)
 - Creation of the grooves (800 x 200 μm²) by photolithography process @ 180°C
 - Gluing by hot pressing the LF7001 24 μm lid
 - cured @ 180°C for 10h



MicroChannel Material Budget

Material	Radiation length [cm]
Kapton	28.6
H ₂ O	36.1

➤ Material budget of the ALICE Pixel cooling (Phynox tube + C4F10) \approx O.8 % X_0

Conclusions

- The ITS upgrade aims to increase the ALICE sensitivity to heavy flavour by improving the impact parameter resolution
- > Both Monolithic and Hybrid Pixels are being considered for the upgrade
- At present, for the innermost layers the hybrid option seems to be preferable compared to the monolithic for radiation hardness
- ➤ A very light ($\leq 0.5 \% X_0$) pixel detector is necessary
- > R&D activities ongoing:
 - thin active edge planar sensor
 - front-end chip thinning
 - polyimide microchannel cooling

Timeline

- ➤ The upgrade should target the Phase I (2017-18) shutdown
 - ✓ The scope of the upgrade Phase I should be well tailored to what can be reasonably prepared and tested within the next five years and installed in 15 months.
 - ✓ The full upgrade program might require a two step approach with a partial upgrade in Phase I and the completion in Phase II (2020 and beyond)
- Decisions on upgrade plans in terms of physics strategy, detector feasibility, funding availability, should be taken in 2011
 - ✓ Expression of Interest: ready
 - ✓ Preparation of a technical proposal till summer 2011
 - ✓ R&D for Phase I: 2010-2014
 - ✓ Production and pre-commissioning for Phase I: 2014-2016
 - ✓ Installation and commissioning for Phase I: 2017

V. Manzari - INFN Bari