(Some aspects of) $\gamma \gamma$ physics at Flavour Factories

Fulvio Piccinini

INFN, Sezione di Pavia

SuperB Physics Workshop, 29 May - 1 June, 2011

Outline

- Introduction
- the Low function and its accuracy
- accuracy of QED theoretical predictions
- hadronic resonance production
- $\sigma(\gamma \gamma \rightarrow$ hadrons $)$
- charmonia and their exotics
- benefit from electron taggers
- Summary

Introduction: $e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma^{*} \gamma^{*} \rightarrow e^{+} e^{-} X$

Features of two-photon physics

- increasing x-sect's with \sqrt{s}

- possible quantum numbers of the produced X system: $J^{P C}=0^{ \pm+}, 2^{ \pm+}$, different from what is accessible through $e^{+} e^{-}$annihilation
D.M. Asner et al., arXiv:0809.1869[arXiv:hep-ex]

Relevance of two-photon physics

- the coupling of hadronic resonances to $\gamma \gamma$ can be studied in a production process, allowing an independent determination of the width $h \rightarrow \gamma \gamma$
- this can clarify the nature of hadronic resonances such as for instance light scalar mesons $\sigma(600), f_{0}(980)$
- charmonia and exotics with $C=+$ and even J
- the knowledge of $\gamma^{(*)} \gamma^{(*)} P\left(P=\pi^{0}, \eta, \eta^{\prime}\right)$ form factors $F\left(Q^{2}, q_{1}^{2}, q_{2}^{2}\right)$ will be crucial for the determination of light-by-light contribution to $g-2$, which will be the main source of th-uncertainty

The Equivalent Photon Approximation (EPA)

- for a generic process both t - and s - channel topologies contribute

- including in the event selection the collinear regions for electrons, the $1 / q^{2}$ structure of the photon propagators enhances the " $\gamma \gamma$ fusion" diagram

The Equivalent Photon Approximation (EPA)

- in this condition a good approximation is to consider
- on-shell $\left(q_{i}^{2}=0\right)$ incoming photons
- only transverse photon polarization degrees

This is used as a definition of $\sigma_{\gamma \gamma \rightarrow X}$

Features of EPA

- the Low function $d F / d W_{\gamma \gamma}$ can be calculated from QED (see following slides
F. Low Phys. Rev. 120 (1960) 582
- the hadronic model dependence of the calculation is confined in $\sigma_{\gamma \gamma \rightarrow X}$, which is a $2 \rightarrow 2$ process and hence easier to be calculated
- e.g. the two-loop ChPT calculation of $\sigma\left(\gamma \gamma \rightarrow \pi^{0} \pi^{0}\right)$

Bellucci, Gasser and Sainio, Nucl. Phys. B423 (1994) 80
would be much more complicated for the complete non-factorized process $e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0} \pi^{0}$

- $\sigma_{\gamma \gamma \rightarrow X}$ is a quantity defined independently of the details of the experiment and so it is useful when comparing results of different experiments at different machines
- the factorization introduces an approximation which needs to be quantified with as complete as possible calculations
- This issue becomes important with increasing machine luminosity

The Low function

$$
\begin{aligned}
\sigma & =\int_{\tau_{\text {thresh }}}^{1} \sigma_{\gamma \gamma}\left(W^{2}=\tau s\right) F(\tau) \\
F & =\frac{1}{\tau} \int N\left(x_{1}\right) N\left(x_{2}=\tau / x_{1}\right) \frac{d x_{1}}{x_{1}} \\
N\left(x_{i}\right) & =\left(\frac{\alpha}{2 \pi}\right)\left\{\left[1+\left(1-x_{i}\right)^{2} \log \frac{Q_{i \max }^{2}}{Q_{i \min }^{2}}\right]-2 m_{e}^{2} x_{i}^{2}\left[\frac{1}{Q_{i \text { min }}^{2}}-\frac{1}{Q_{i \text { min }}^{2}}\right]\right\}
\end{aligned}
$$

- $Q_{i \text { min }}^{2}$ and $Q_{i \max }^{2}$ determined from the experimental conditions on the $e^{ \pm}$scattering angles ϑ_{i} and energies
- the smaller $\vartheta_{i \text {,max }}$ the better the approximation

the Low function expression at fixed W^{2}

$$
\begin{aligned}
L\left(W^{2}, s\right) & =\left(\frac{\alpha}{\pi}\right)^{2} \frac{F\left(W^{2}, s\right)}{W^{2}} \\
F\left(W^{2}, s\right) & =\frac{2}{3}\left(\log \frac{s}{W^{2}}\right)^{3}+2\left(\log \frac{s}{W^{2}}\right)^{2}\left(\log \frac{W^{2}}{m^{2}}\right) \\
& +\left(\log \frac{s}{W^{2}}\right)\left(\log \frac{W^{2}}{m^{2}}\right)^{2}-4\left(\log \frac{s}{W^{2}}\right)^{2} \\
& -7\left(\log \frac{s}{W^{2}}\right)\left(\log \frac{W^{2}}{m^{2}}\right)-\frac{3}{2}\left(\log \frac{W^{2}}{m^{2}}\right)^{2} \\
& +\left(\frac{17}{2}-\frac{2 \pi^{2}}{3}\right)\left(\log \frac{s}{W^{2}}\right)+\left(\frac{39}{4}-\frac{2 \pi^{2}}{3}\right)\left(\log \frac{W^{2}}{m^{2}}\right) \\
& -\frac{7}{2}+\frac{7}{6} \pi^{2}-4 \zeta(3)+\mathcal{O}\left(\frac{W^{2}}{s}\right)
\end{aligned}
$$

Bonneau, Gourdin, Martin, Nucl. Phys. B54 (1973) 573

event selections

- two classes of event selections:
- untagged events: no detected electrons
- all recent experimental data analysis at BaBar, Belle and CLEO, aiming at measurements of $\sigma(\gamma \gamma \rightarrow$ hadrons $)$, consider untagged events
- to rely on the factorization approximation a cut $p_{\perp} \lesssim 0.1 \mathrm{GeV}$ on the detected hadronic system is imposed
- usually from comparison between theoretical predictions based on complete diagrammatic calculations and simulations using EPA, a systematic error of the order of 5% is assigned
- already at present flavour factories, this is about 50\% of the total error
- single-tag events: only one detected electron
- used for the measurement of form factors $F\left(Q^{2}, q^{2}, 0\right)$
- double-tag events: necessary for measurements of $F\left(Q^{2}, q_{1}^{2}, q_{2}^{2}\right)$. Without forward taggers (as e.g. at LEP) generally very low rates

resonance production

- production cross section of a resonance (using EPA):

$$
\begin{aligned}
\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-} R\right) & =\int \sigma_{\gamma \gamma \rightarrow R} d L_{\gamma \gamma}\left(W^{2}\right) \\
\sigma_{\gamma \gamma \rightarrow R}\left(W^{2}, q_{1}^{2}, q_{2}^{2}\right) & =8 \pi\left(2 J_{R}+1\right) \Gamma_{\gamma \gamma}(R) F\left(q_{1}^{2}, q_{2}^{2}\right) \\
& \times \frac{\Gamma_{R}}{\left(W^{2}-M_{R}^{2}\right)^{2}+M_{R}^{2} \Gamma_{R}^{2}} \\
F(0,0) & =1
\end{aligned}
$$

- the measured cross section directly proportional to the combination $\Gamma_{\gamma \gamma}(R) \times \mathcal{B} \mathcal{R}(R \rightarrow h)$, where h is the analysed exclusive final state
- sensitivity to the form factor only with single or double tag events

Radiative Corrections

- t-channel photonic $\mathrm{RC} \oplus$ vacuum polarization (for $\mu^{+} \mu^{-}$ production) \simeq few \% (for untagged ev. sel.; they become more relevant for single or double tag ev. sel.)

F.A. Berends, P.H. Daverveldt and R. Kleiss, Nucl. Phys. B253 (1985) 421
- up-down interference (for point-like pseudoscalar production) completely negligible

W.L. van Neerven and J.A.M. Vermaseren, Phys. Lett. B142 (1984) 80; Nucl. Phys. B238 (1984) 73

A list of available simulation tools

- Program by A. Courau for $e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0} \pi^{0}, e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}$
- EKHARA: exact LO matrix elements (with form factors) $e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{+} \pi^{-}, e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}$
H. Czyz and S. Ivashyn, Comp. Phys. Comm. 182 (2011) 1338
- TREP S: based on EPA for several kernel processes (used for analysis @Belle)
S. Uehara, KEK-REPORT-96-11
- NPP: exact LO matrix elements for $e^{+} e^{-} \rightarrow e^{+} e^{-} \sigma \rightarrow e^{+} e^{-} \pi^{0} \pi^{0}, e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0} / \eta$ (used for analysis @ KLOE)
F. Nguyen, A.D. Polosa and F. Piccinini, Eur. Phys. J. C47 (2006) 65
- GaGaRes: exact LO simulation of resonance production for ${ }^{1} S_{0},{ }^{3} P_{J},{ }^{1} D_{2}$ (used for analysis @ LEP2)
F.A. Berends and R. van Gulik, Comp. Phys. Comm. 144 (2002) 82
- GALUGA: it adopts the improved EPA (used for analysis @ LEP2)
G.A. Schuler, Comp. Phys. Comm. 108 (1998) 82
- TWOGAM: $e^{+} e^{-} \rightarrow e^{+} e^{-} P$, with $P=\pi^{0} / \eta / \eta^{\prime}$ (used for analysis @ CLEO)
D.M. Coffman
- TWOGEN: several kernel processes with EPA
A. Buijs, W.G. Langeveld, M.H. Lehto, D.J. Miller, Comp.Phys.Commun. 79 (1994) 523

π pair production measurements

G. Amelino-Camelia et al., Eur.Phys.J. C68 (2010) 619

- precise Belle data for $W_{\gamma \gamma}>0.8 \mathrm{GeV}$

F. Nguyen, A.D. Polosa, F.P., Eur. Phys. J. C47 (2006) 65
- KLOE2 will improve for lower
$W_{\gamma \gamma}$
- How can improve SuperB in that region?

expected and unexpected charmonia

J.P. Lees et al., Phys. Rev. D; V.P. Druzhinin, arXiv:1011.6159

\Uparrow	\Uparrow	\Uparrow	$\Uparrow \Uparrow \Uparrow$		
η_{c}	$\eta_{c}(2 S)$	η_{c}	$\chi_{c 0}$		$\chi_{c 2} \eta_{c}(2 S)$
:---	:---				

η_{c} and χ_{c} already seen ten years ago by LEP Collaborations

expected and unexpected charmonia

$$
e^{+} e^{-} \rightarrow e^{+} e^{-} D^{+} D^{-} / D^{0} \overline{D^{0}}
$$

S. Uehara et al., Phys. Rev. Lett. 96 (2006) 082003

$$
Z(3930)=\chi_{c 2}^{\prime}\left(2^{3} P_{2}\right) ?
$$

expected and unexpected charmonia

$$
e^{+} e^{-} \rightarrow e^{+} e^{-} J / \psi \omega
$$

$$
e^{+} e^{-} \rightarrow e^{+} e^{-} J / \psi \phi
$$

S. Uehara et al., Phys. Rev. Lett. 104 (2010) 092001
B. Aubert et al., arXiv:1002.0281[hep-ex]

$$
X(3915)=?, J^{P C} ?
$$

Summary

- Flavour Factories are sources of (quasi-real) $\gamma \gamma$ interactions with variable c.m. energy
- they could give important information on several subjects:
- hadronic cross sections of hadron pair production (particularly in the low $\gamma \gamma$ c.m. energy region)
- study of resonances $\gamma \gamma$ partial widths through the production channel
- search for new states with $C=+$
- measurement of form factors
- to fully exploit the huge available statistics, careful checks between (possibly) exact calculations (including radiative corrections) and results in EPA approximation need to be carried out
- such measurements would benefit from the presence of forward electron/positron taggers (see next talk by F. Nguyen)

