

LFV in T decays with Polarized beams

Alberto Cervelli Universita' Di Pisa

Tuesday, May 31, 2011

Outline

- News since Frascati meeting
- The BaBar analysis with polarized beams
- Helicity angles and scatter plots for the selected events
- Ongoing work
- Conclusions

Tuesday, May 31, 2011

SuperB

Kick-off Meeting

Alberto Cervelli

Universita' di Pisa

News since Frascati

- Reproduced BaBar analysis on V0.2.6 generated Fast sim ntuples
- Efficiency of the selection compatible with BaBar analysis
- Redid analysis on angular distribution for reconstructed and selected events.

Kick-off Meeting Tuesday, May 31, 2011

SuperB

Tuesday, May 31, 2011

etag: Data 1448 Bkg 1034.7 Sig 0.8(%)

40

20

Further selection is applied using three ²⁰ Further selection is applied using three ²⁰

100

Jag₁ side sel⁵⁰/₂ction:
Jm_{V-}in the hypothesis that_the₁signal side is fully reconstructed.

•Pseudomass: reconstructed mass in the hypothesis V is colinear with signal T and has a cutoff at $m_T \checkmark$

Signal Side selection • $\cos\theta_{opening}$: opening angle between lepton and track \checkmark • π^{0} reconstruction consistency \thickapprox •E γ >I GeV & no further γ over I00 MeV \checkmark

•2ΣP^{CM}/√s <0.77 ✔

Global Selection • $\cos\theta_{miss} \& p^{T}_{miss}$ are used to reduce QED bkg \checkmark • $\cos\theta_{recoil}$:angle between reconstructed tau directions. \checkmark

• ΔE_{Y} : neglecting track masses X

Alberto Cervelli Universita' di Pisa

Helicity Angle after Reconstruction

• Main Concern: will the polarization information be propagated in the selection?

BaBar analysis have many cuts affecting angular distribution:

- requirement to have the signal track and photon in the same hemisphere
- opening angle between signal track and photon
- Rho reconstruction due to photons laying in signal side

After reconstruction the slopes of the helicity angles are slightly modified due to smearing

But mantain the same slopes of the MC distribution before selection

Alberto Cervelli Universita' di Pisa

Tuesday, May 31, 2011

Tuesday, May 31, 2011

Scatter Plots

The regions at signal helicity angle near 1 and -1 are suppressed because of the requirement of muon and photon laying in the same hemisphere Smearing effects make the distribution in the scatter plot much wider in the selected sample with respect to the MC sample, however a denser region is clearly visible

Tuesday, May 31, 2011

Signal vs Backgrounds

Correlation between π and μ angle for polarized (bkg)

1

Correlation between π and μ angle for polarized (bkg) MC

Tuesday, May 31, 2011

Remarks

Polarization information is passed through the BaBar selection, but some of the requirements alter the helicity angle distribution since they act on the angular distribution of the products

Background and signal distribution substantially different even after selection applied: Polarization offers an handle even after selection is applied

No selection on the Signal box have been applied to maintain a reasonable quantity of background events, however it is not expected to affect helicity angle distribution

To do: Today only π channel presented, with few statistics. Increment in statistics under way. Rho selection is being perfected, harder to cope with photons and rho reconstruction which may affect angular distributions

Tau 2010, Manchester 13-17 Sept 2010

Alberto Cervelli

Universita' di Pisa

Ongoing Work

- Increasing statistics for both π and ρ channels
- Implementing the rest of BaBar analysis: Neural Network and PID
- Study theoretical expectation for the tracks and taus momenta direction for polarized beam production (B. Oberhof)
- Make quantitative estimation of the effects of polarization after the selection is applied
- Reoptimize selection to better accomodate Polarization information

Tau 2010, Manchester

Alberto Cervelli

Universita' di Pisa

Conclusion

- Polarization information not used in BaBar analysis as expected
- However BaBar analysis seems to degrade the Polarization discriminating power to some extent
- Need to optimize the selection in order to use Polarization effectively, probably by releasing some cuts on the variables affecting angular distributions
- A comparison between theoretical expectation and experimental distribution is needed, work ongoing on this topic
- Polarization still seems to be a good handle to reduce backgrounds from radiative tau decays

Tau 2010, Manchester

attention

SuperB Kick-off Meeting Tuesday, May 31, 2011

13

Alberto Cervelli Universita' di Pisa

Polarization may be used to reduce irreducible backgrounds using the decay dynamics

e⁻ beam is simulated with 80% polarization.

for $\tau \rightarrow h\nu$ decays the correlation between ν direction and the event polarization is defined.

We can observe the correlation between the helicity angles in the tag side and signal side.

SuperB **Kick-off Meeting** Tuesday, May 31, 2011