

EXCLUSIVE $B \to K^{\star} \ell \ell$ with high statistics

Will Reece (CERN)

Introduction

- Rare decays a hot topic at the LHC
 - Core part of LHCb physics program (arXiv:0912.4179)
 - \blacksquare Sensitive to new physics in $b \to s$ loops
- Two targets of particular interest
 - $\square B_s \to \mu \mu \text{ and } B_d \to K^\star \ell \ell$
 - Orthogonal and complementary views on NP
 - **Gives** access to C_7 , C_9 , C_{10} , C_S , C_P & Primes
- \square Will focus on $B_d \to K^* \mu \mu \, {\rm at} \, {\rm LHCb}$

Not a member of collaboration so will concentrate on phenomenology results and interesting measurements

Note on Yields

3

- Public LHCb MC studies:
 - Full simulation at 14 TeV
 - \Box Use $\sigma_{b\bar{b}}$ = 500 µb
 - 2fb⁻¹ per nominal year
- □ 2011 LHC Run:
 - 7TeV with pile-up
 - Measure (arXiv:1009.2731):

 $\sigma(pp \to b\bar{b}X) = (284 \pm 20 \pm 49)\mu b$

Stick to official MC yields here:

Mentally scale by ~0.6!

(generated 2011-05-30 08:10 including fill 1815)

LHCb Analysis Status

Selection tuned on $B \to K^{\star} J/\psi$ events Clean signal sample Results only for 36pb⁻¹ \Box 23±6 evts; B/S = 0.2 BaBar: 60 0.3 □ Belle: 230 0.25 100 0.4

LHCb at planned lumi now

 $\sim 200 \text{pb}^{-1}$ on tape in 2011

LHCb 2010 LHC Run data: B/S = 0.2; Selected with MVA B/S = 1 gives 50% more events

 $B_d \to K^* \mu^+ \mu^-$

9

First observed at Belle

- $Br(B_d \to K^* \mu^+ \mu^-) = (11.5 \ ^{+0.16}_{-0.15}) \times 10^{-7}$
- Particles in Loop
 - Both neutral and charged NP (replace W[±], Z⁰/γ, u/c/t)
- □ Sensitive to NP in loops
 - Use OPE: Model independent $\mathcal{H}_{\mathrm{eff}} \propto \sum_{i=1}^{10} \left[C_i \mathcal{O}_i + C'_i \mathcal{O}'_i \right]$
- Dominated by C_7 , C_9 , C_{10} in SM
 - Enhance other operators with NP
- Measure Wilson coefficients
 - $\hfill\square$ Discover or limit NP in $\hfill b \to s$ loop

b

 \overline{B}_d

Wilson Coefficients A Physical Structure & WD For Physical CCO (22) (40,20)

A. Bharucha & WR, Eur.Phys.J.C69:623-640,2010

Red: 68%; Blue 95%

Decay Kinematics

- θ_l : Angle between μ^- and \bar{B} in $\mu\mu$ rest frame
- $\theta_K :$ Angle between K^- and the \bar{B} in the \bar{K}^{*0} rest frame
 - $\phi :$ Angle between the \bar{K}^{*0} and $\mu \mu$ decay planes

Decay described in terms of 3 Angles and 1 Invariant Mass $\Box \theta_{\mu}, \theta_{\kappa}, \phi$ and q^2 , the invariant mass squared of μ pair

Angular Distribution

Page 12

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_{\mathrm{l}}\,\mathrm{d}\cos\theta_{\mathrm{K}^{\star}}\,\mathrm{d}\phi} = \frac{9}{32\pi}I(q^2,\theta_l,\theta_{K^{\star}},\phi)$$

Angular Distribution (Experimental)

Page 13

Resolution: q₂, θ_μ, θ_κ, φ good
 Decay distribution symmetries:
 Important for fitting

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_{\mathrm{I}}\,\mathrm{d}\cos\theta_{\mathrm{K}^{\star}}\,\mathrm{d}\phi} = \frac{9}{32\pi}I(q^2,\theta_l,\theta_{K^*},\phi)$$

- Number events in sample
 Proportional to decay amplitude
 - Larger coefficients → more events → smaller uncertainties on given I_n
- Balance with theory errors
 - Many nice observables proposed


```
Landscape – q<sup>2</sup>
```


Theoretically clean regions:

- Large recoil (1<q²<6 GeV²) e.g. Kruger, Matias, Phys.Rev.D71:094009,2005
- Low recoil (14<q²<19.2 GeV²) Bobeth et al, JHEP 1007:098,2010
- Belle measures signal yields in both regions
 - Ratio low/high: 0.35±0.1

What to measure?

- 16
- Consider three phases: low, medium, high statistics
- □ Low statistics (~100s): 1D projections
 - **A**_{FB}, F_L , BF, $(A_T^{(2)}, S_9)$
- Medium statistics (~1000s): Can use 2D projections
 - \square A_{FB} (+ Zero), S₅ (+ Zero), A_T⁽²⁾, CP asymmetries
- □ High statistics (>5000): Full-angular analysis
 - Can measure everything!
 - Many theoretically clean variables for low and high q²
 - May be able to possible to reduce required yields?

Low Statistics
$$H_T^{(3)} = \frac{\operatorname{Re}(A_{\parallel}^L A_{\perp}^{L*} - A_{\parallel}^{R*} A_{\perp}^R)}{\sqrt{(|A_{\parallel}^L|^2 + |A_{\parallel}^R|^2)(|A_{\perp}^L|^2 + |A_{\perp}^R|^2)}} = \frac{\beta_l J_6}{2\sqrt{(2J_2^s)^2 - J_3^2}}$$

Limited to 1D distributions – project over angles

17

$$\begin{aligned} \frac{d\Gamma'}{d\phi} &= \frac{\Gamma'}{2\pi} \left(1 + \frac{1}{2} (1 - F_L) A_T^{(2)} \cos 2\phi + A_{Im} \sin 2\phi \right) \\ \frac{d\Gamma'}{d\cos\theta_I} &= \Gamma' \left(\frac{3}{4} F_L \sin^2\theta_I + \frac{3}{8} (1 - F_L) (1 + \cos^2\theta_I) + A_{FB} \cos\theta_I \right) \\ \frac{d\Gamma'}{d\cos\theta_K} &= \frac{3\Gamma'}{4} \left(2F_L \cos^2\theta_K + (1 - F_L) \sin^2\theta_K \right) \end{aligned}$$

- □ Try simultaneous fit 3x1D (LHCb-PUB-2007-057)
- Sensitivity to A_T⁽²⁾ poor in low q² region (F_L large)
 In high q² region, F_L smaller so expect much better results

• C.F. Very low $q^2 B \rightarrow K^*$ ee analysis (LHCb-PUB-2009-008)

Excellent prospects for $H_T^{(3)}$ at this stage

Medium Statistics ¹

$$H_T^{(2)} = \frac{\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^{R*} A_{\perp}^R)}{\sqrt{\left(|A_0^L|^2 + |A_0^R|^2\right)\left(|A_{\perp}^L|^2 + |A_{\perp}^R|^2\right)}} = \frac{\beta_l J_5}{\sqrt{-2J_2^c \left(2J_2^s + J_3\right)}}$$

18

10 12 8 14 $q_0^2(A_{FB})$ $\frac{G_0(S_5)}{G_0(A_{\rm FB})} \approx 1.75$

Comparing Observables

Observable	$2{\rm fb}^{-1}$	$1{\rm fb}^{-1}$	$0.5{\rm fb}^{-1}$	$LHCb \ 2 fb^{-1}$	Ref.
$q_0^2(A_{ m FB})$	$^{+0.56}_{-0.94}$	$^{+1.27}_{-0.97}$	_	0.42	[128]
$q_0^2(S_5)$	$^{+0.27}_{-0.25}$	$^{+0.53}_{-0.40}$	_	_	
$\langle A_{\rm FB} \rangle_{1-6{\rm GeV}^2}$	$+0.03 \\ -0.04$	$+0.05 \\ -0.03$	$+0.08 \\ -0.06$	0.020	[107]
$\langle F_{\rm L} \rangle_{1-6{ m GeV}^2}$	$^{+0.02}_{-0.02}$	$^{+0.04}_{-0.03}$	$^{+0.04}_{-0.06}$	0.016	[107]
$\langle S_5 \rangle_{1-6 \mathrm{GeV}^2}$	$+0.07 \\ -0.08$	$^{+0.09}_{-0.11}$	$^{+0.16}_{-0.15}$	_	
$\langle A_9 \rangle_{1-6{ m GeV}^2}$	$^{+0.08}_{-0.07}$	$^{+0.11}_{-0.11}$	$^{+0.22}_{-0.14}$	0.015	$[2]^{a}$

Use simple counting experiments (non-optimal)

- Compare sensitivities (official LHCb numbers shown in box)
- See CERN-THESIS-2010-095 for more details

Effects on Parameter Space (2fb⁻¹)

20

- What if LHCb 2fb⁻¹
 - results were at SM?
 - See previous table
 - A₉ not considered
- Parameter space much reduced at 68%
 - High-q² will help further
 - CP asymmetries

William Reece - CERN

High q^2 Estimates: ($q^2 > 14GeV$)

Observable $2 \text{fb}^{-1} 1 \text{fb}^{-1} 0.5 \text{fb}^{-1}$	$LHCb \ 2 fb^{-1}$	Ref.
My (unofficial) high-q ² estimates:	0.42	[128]
A_{FB} : ±0.01 F_L : ±0.01 $A_T^{(2)}$: ±0.2 $H_T^{(3)}$: ±0.1	- 0.020 0.016 -	[107] [107]
Based on CERN-LHCB-2007-057	0.015	$[2]^{a}$

Increased statistics in high-q² bin: Factor of 2-3

Selection efficiencies, trigger, acceptance easier?

 \Box F_L suppression of A_T⁽²⁾ reduced: Take 25% effect here

High Statistics

22

- Perform full-angular analysis
 - Fit for spin amplitudes
 - $\bullet A_{\perp L,R}, A_{\mid\mid L,R}, A_{0L,R}$
 - Assume polynomial q² variation
- Calculate <u>any</u> observable from amplitudes
 - New observables A_T⁽³⁾ A_T⁽⁴⁾ optimized for C₇' sensitivity
 - 10fb⁻¹ sensitivities for SUSY input
 - JHEP 0704 (2007) 058 model 'b'
 - Allowed by experimental constraints
- MC Fits converge with 2fb⁻¹
- □ Separate fit in high-q² region \rightarrow H_T⁽¹⁾
- All CP asymmetries now available

SM Theory Distribution Toy fits to SUSY **model b** (C'₇ != 0) 1, 2σ

High Statistics

SM Theory Distribution Toy fits to SUSY model b (C' $_7$!= 0) 1, 2 σ

23

- Perform full-angular analysis
 - Fit for spin amplitudes
 - $\bullet A_{\perp L,R}, A_{\mid\mid L,R}, A_{0L,R}$
 - Assume polynomial q² variation
- Calculate <u>any</u> observable from amplitudes
 - New observables A_T⁽³⁾ A_T⁽⁴⁾ optimized for C₇' sensitivity
 - 10fb⁻¹ sensitivities for SUSY input
 - JHEP 0704 (2007) 058 model 'b'
 - Allowed by experimental constraints
- MC Fits converge with 2fb⁻¹
- □ Separate fit in high-q² region \rightarrow H_T⁽¹⁾
- □ All CP asymmetries now available

Note on Symmetries

C -		7	
- 7	7	6	

Case	Coefficients	Dependencies	Amplitudes	Symmetries
$m_\ell=0, \ A_S=0$	11	3	6	4
$m_\ell=0$	11	2	7	5
$m_\ell > 0, \ A_S = 0$	11	1	7	4
$m_{\ell} > 0$	12	0	8	4

Angular distribution has symmetries

- Must be removed before fitting (under-constrained)
- All observables must be invariant

\square Many in literature are not! E.g. $A_T^{(1)}$

- □ Massless leptons case: 3 trivial + 1 non-trivial
 - Independent L and R phase rotations
 - Two L-R rotations: One real, one complex
 - **See Egede** *et al*, JHEP **1010**:056,2010

Full Angular Fit Sensitivities (SM)

Summary

- 27
 - \square Three eras of $B \to K^\star \mu \mu$ measurements at LHCb
 - Each has interesting observables to study
 - Must balance experimental and theoretical uncertainties
 - Should really cut into allowed regions
 - Severe limits or explore structure of NP
 - High-q² region little studied so far by experimentalists
 - Looks pretty promising
 - Full-angular analysis will be key
 - Most interesting area for comparison with SuperB

Comparisons with Theory (2010)

Table 8: Experimental measurements used as constraints, along with theoretical predictions in the SM.

A. Bharucha & WR, Eur.Phys.J.C69:623-640,2010

Landscape with NP

William Reece - CERN

Landscape with NP

Massless symmetries

Left-handed phase rotation Right-handed phase rotation

Continuous L-R global rotation

Continuous L-R global rotation

$$\begin{split} A_{\perp L}^{'} &= e^{i\phi_{L}}A_{\perp L}, \ A_{\parallel L}^{'} = e^{i\phi_{L}}A_{\parallel L}, \ A_{0L}^{'} = e^{i\phi_{L}}A_{0L} \\ A_{\perp R}^{'} &= e^{i\phi_{R}}A_{\perp R}, \ A_{\parallel R}^{'} = e^{i\phi_{R}}A_{\parallel R}, \ A_{0R}^{'} = e^{i\phi_{R}}A_{0R} \\ A_{\perp L}^{'} &= +\cos\theta A_{\perp L} + \sin\theta A_{\perp R}^{*} \\ A_{\perp R}^{'} &= -\sin\theta A_{\perp L}^{*} + \cos\theta A_{\perp R} \\ A_{0L}^{'} &= +\cos\theta A_{0L} - \sin\theta A_{0R}^{*} \\ A_{0R}^{'} &= +\sin\theta A_{0L}^{*} + \cos\theta A_{0R} \\ A_{\parallel L}^{'} &= +\cos\theta A_{\parallel L} - \sin\theta A_{\parallel R}^{*} \\ A_{\parallel R}^{'} &= +\sin\theta A_{\parallel L}^{*} + \cos\theta A_{\parallel R} \\ A_{\parallel R}^{''} &= +\cosh i\phi A_{\perp L}^{*} + \sinh i\phi A_{\perp R}^{*} \\ A_{\perp R}^{''} &= +\sinh i\phi A_{\perp L}^{*} + \cosh i\phi A_{\perp R} \\ A_{0L}^{''} &= +\cosh i\phi A_{0L} - \sinh i\phi A_{0R}^{*} \\ A_{0L}^{''} &= +\cosh i\phi A_{0L} - \sinh i\phi A_{0R}^{*} \\ A_{0R}^{''} &= -\sinh i\phi A_{\parallel L}^{*} - \sinh i\phi A_{\parallel R}^{*} \\ A_{\parallel R}^{''} &= -\sinh i\phi A_{\parallel L}^{*} - \sinh i\phi A_{\parallel R}^{*} \\ A_{\parallel R}^{''} &= -\sinh i\phi A_{\parallel L}^{*} - \sinh i\phi A_{\parallel R}^{*} \\ A_{\parallel R}^{''} &= -\sinh i\phi A_{\parallel L}^{*} - \sinh i\phi A_{\parallel R}^{*} \\ A_{\parallel R}^{''} &= -\sinh i\phi A_{\parallel L}^{*} - \sinh i\phi A_{\parallel R}^{*} \\ A_{\parallel R}^{''} &= -\sinh i\phi A_{\parallel L}^{*} + \cosh i\phi A_{\parallel R}. \end{split}$$