Strangeness changing form factors and $V_{u s}$ from τ decay data

Diogo Boito

SuperB - Elba
3I May 20II
\square Inclusive τ decays (in a nut shell)

- $\alpha_{s}\left(m_{\tau}^{2}\right)$ from $|\Delta S|=0$ decays
- $V_{u s}$ from $|\Delta S|=1$ decays
$\square \quad$ Decay $\tau \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}$: form factors $\longleftrightarrow V_{u s}$ from $K_{l 3}$ decays
\square Inclusive τ decays (in a nut shell)
- $\alpha_{s}\left(m_{\tau}^{2}\right)$ from $|\Delta S|=0$ decays
- $V_{u s}$ from $|\Delta S|=1$ decays

General discussion. (b-factories have contributed and can contribute a lot.)
$\square \quad$ Decay $\tau \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}$: form factors $\longleftrightarrow V_{u s}$ from $K_{l 3}$ decays Results from an analysis of the Belle spectrum
\square Inclusive τ decays (in a nut shell)

- $\alpha_{s}\left(m_{\tau}^{2}\right)$ from $|\Delta S|=0$ decays
- $V_{u s}$ from $|\Delta S|=1$ decays

General discussion. (b-factories have contributed and can contribute a lot.)
$\square \quad$ Decay $\tau \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}$: form factors $\longleftrightarrow V_{u s}$ from $K_{l 3}$ decays

Results from an analysis of the Belle spectrum

\square Data from b-factories:

- Several decays with $|\Delta S|=1$ were measured:

$$
\tau \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}, \tau \rightarrow \nu_{\tau} \phi K^{-}, \tau \rightarrow \nu_{\tau} K^{-} K^{-} K^{+} \ldots
$$

- Spectral functions for $|\Delta S|=0$ still to be done. Indirect contributions from b-fac.: e.g. $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0}$

$$
\begin{aligned}
R_{\tau} & =\frac{\Gamma\left[\tau \rightarrow \text { hadrons } \nu_{\tau}\right]}{\Gamma\left[\tau \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right]}=R_{\tau, V}+R_{\tau,} \\
& =\frac{1-B_{e}-B_{\mu}}{B_{e}}=3.640 \pm 0.010
\end{aligned}
$$

Related to the correlators
$\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{J_{\mu}(x) J_{\nu}(0)^{\dagger}\right\}| \rangle$

via (optical theorem)

$$
R_{\tau}=12 \pi \int_{0}^{m_{\tau}^{2}} \frac{d s}{m_{\tau}^{2}}\left(1-\frac{s}{m_{\tau}^{2}}\right)^{2}\left[\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{(1)}+\operatorname{Im} \Pi^{(0)}\right]
$$

\square Imaginary parts of the correlators can be determined from experiment (ALEPH, OPAL)
Publicly available for $|\Delta S|=0$

$\tilde{\Pi}\left(x s_{0}\right)=\Pi^{(1+0)}\left(x s_{0}\right)-(1+2 x)^{-1} 2 x \Pi^{(0)}\left(x s_{0}\right)$
R_{τ} corresponds to $w_{\tau}=(1-x)^{2}(1+2 x)$ and $s_{0}=m_{\tau}^{2}$

$$
\Pi(s)=\Pi_{\mathrm{OPE}}(s)+\Delta_{\mathrm{DVs}}(s)
$$

$$
\Pi_{\mathrm{OPE}}^{(J)}(s)=\sum_{D=2 n} \frac{C^{(J)}(s, \mu)\langle\mathcal{O}(\mu)\rangle}{(-s)^{D / 2}}
$$

- Perturbative contribution ($\mathrm{D}=0$, calculated in the massless limit)

$$
\Pi(s)=\Pi_{\mathrm{OPE}}(s)+\Delta_{\mathrm{DVs}}(s)
$$

$$
\Pi_{\mathrm{OPE}}^{(J)}(s)=\sum_{D=2 n} \frac{C^{(J)}(s, \mu)\langle\mathcal{O}(\mu)\rangle}{(-s)^{D / 2}}
$$

\square Perturbative contribution ($D=0$, calculated in the massless limit)

$$
\Pi(s)=\Pi_{\mathrm{OPE}}(s)+\Delta_{\mathrm{DVs}}(s)
$$

$$
\Pi_{\mathrm{OPE}}^{(J)}(s)=\sum_{D=2 n} \frac{C^{(J)}(s, \mu)\langle\mathcal{O}(\mu)\rangle}{(-s)^{D / 2}}
$$

- Perturbative contribution ($\mathrm{D}=0$, calculated in the massless limit)

Baikov, Chetyrkin, and Kuhn, 2008
Long-standing controversy: RG improvement (Contour Improved vs Fixed Order)
Pivovarov (1992); Pich and Le Diberder 1992; Jamin and Beneke, 2008; Caprini and Fischer 2009

$$
\Pi(s)=\Pi_{\mathrm{OPE}}(s)+\Delta_{\mathrm{DVs}}(s)
$$

\square OPE

$$
\Pi_{\mathrm{OPE}}^{(J)}(s)=\sum_{D=2 n} \frac{C^{(J)}(s, \mu)\langle\mathcal{O}(\mu)\rangle}{(-s)^{D / 2}}
$$

- Perturbative contribution ($\mathrm{D}=0$, calculated in the massless limit)

Baikov, Chetyrkin, and Kuhn, 2008
Long-standing controversy: RG improvement (Contour Improved vs Fixed Order)
Pivovarov (1992); Pich and Le Diberder 1992; Jamin and Beneke, 2008; Caprini and Fischer 2009
■ Higher dimensions in the OPE (mass corrections and QCD condensates)
Pich and Prades (1999)
\square Duality Violations (DVs) [almost always disregarded]
Blok, Shifman, and Zhang (1998); Catà, Golterman, and Peris (2005)
Ansatz with parameters fitted to data (for V and A)
Catà, Golterman, and Peris (2009)
Corrects the OPE near the real axis

```
\(\alpha_{s}\left(m_{\tau}^{2}\right)\)
```


- With DVs

■ Fits to moments of OPAL data (problem with ALEPH correlations [see arXiv: 1011.4426])

$$
\left(\begin{array}{l}
\alpha_{s}^{\mathrm{FO}}\left(m_{\tau}^{2}\right)=0.307(18)_{\mathrm{stat}}(4)_{\mathrm{s}_{\text {min }}}(5)_{\alpha_{s}^{5}} \\
\alpha_{s}^{\mathrm{CI}}\left(m_{\tau}^{2}\right)=0.322(25)_{\mathrm{stat}}(7)_{\mathrm{s}_{\text {min }}}(4)_{\alpha_{s}^{5}}
\end{array}\right.
$$

Coherence between truncation of the OPE and the weight function (thanks to DV s)

DB, Catà, Golterman, Jamin, Maltman, Osborne and Peris, arXiv:1103.4194

$V_{u s}$ from inclusive tau decays

\square Construct the following quantity

$$
\delta R_{\tau}^{[w]} \equiv \frac{R_{\tau, V+A}^{[w]}}{\left|V_{u d}\right|^{2}}-\frac{R_{\tau, S}^{[w]}}{\left|V_{u s}\right|^{2}}
$$

Gámiz et. al. PRL (2005); JHEP (2003)
that vanishes in $\operatorname{SU}(3)$ limit (no perturbative contribution). Contributions coming from quark mass differences. One has (taking m_{s} from other measurements):

$$
\left|V_{u s}\right|^{2}=\frac{R_{\tau, S}}{\frac{R_{\tau, V+A}}{\left|V_{u d}\right|^{2}}-\delta R_{\tau, t h}}
$$

Tension $(\sim 3 \sigma)$ among results from tau and kaon decays. Reason?

Construct the following quantity

$$
\delta R_{\tau}^{[w]} \equiv \frac{R_{\tau, V+A}^{[w]}}{\left|V_{u d}\right|^{2}}-\frac{R_{\tau, S}^{[w]}}{\left|V_{u s}\right|^{2}}
$$

that vanishes in $\operatorname{SU}(3)$ limit (no perturbative contribution). Contributions coming from quark mass differences. One has (taking m_{s} from other measurements):

$$
\left|V_{u s}\right|^{2}=\frac{-R_{\underline{\tau}, \underline{S}}}{\frac{R_{\tau, V+A}}{\left|V_{u d}\right|^{2}}-\delta R_{\tau, t h}}
$$

Tension $(\sim 3 \sigma)$ among results from tau and kaon decays. Reason?
$\square R_{\tau, V+A}=3.479(11), V_{u d}$ is very well known: $\sigma_{\left(\frac{R_{\tau, V+A}}{\left|V_{u d}\right|^{2}}\right)} \sim 0.3 \%$
$\square^{\prime} \bar{K}_{\tau, S}^{-} \bar{\top} 0.1615(40)$ Dominant uncertainty (result with input from b-factories).
Smaller value leads to smaller $V_{u s} . b$-factories branching ratios systematically smaller.

Pich (Tau2010), Maltman (Tau2010), Lusiani (ICHEP 2010)
$\square \delta R_{\tau, \text { th }}=0.216(16)$ Small impact on the final uncertainty of $V_{u s}$
\square Stability with respect to s_{0} ? Maltman PLB (2009); Maltman and Wolfe, PLB (2006)

Construct the following quantity

$$
\delta R_{\tau}^{[w]} \equiv \frac{R_{\tau, V+A}^{[w]}}{\left|V_{u d}\right|^{2}}-\frac{R_{\tau, S}^{[w]}}{\left|V_{u s}\right|^{2}}
$$

that vanishes in $\operatorname{SU}(3)$ limit (no perturbative contribution). Contributions coming from quark mass differences. One has (taking m_{s} from other measurements):

$$
\left|V_{u s}\right|^{2}=\frac{-R_{\underline{\tau}, \underline{S}}}{\frac{R_{\tau, V+A}}{\left|V_{u d}\right|^{2}}-\delta R_{\tau, t h}}
$$

Tension $(\sim 3 \sigma)$ among results from tau and kaon decays. Reason?
$\square R_{\tau, V+A}=3.479(11), V_{u d}$ is very well known: $\sigma_{\left(\frac{R_{\tau, V+A}}{\left|V_{u d}\right|^{2}}\right)} \sim 0.3 \%$
[see M. Antonelli's talk]
$\square^{\prime} \bar{R}_{\tau, S}-\bar{\top} 0.1615(40)$ Dominant uncertainty (result with input from b-factories).
Smaller value leads to smaller $V_{u s} . b$-factories branching ratios systematically smaller.

Pich (Tau2010), Maltman (Tau2010), Lusiani (ICHEP 2010)
$\square \delta R_{\tau, \text { th }}=0.216(16)$ Small impact on the final uncertainty of $V_{u s}$
\square Stability with respect to s_{0} ? Maltman PLB (2009); Maltman and Wolfe, PLB (2006)

$\tau \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}$

\square Spectra from b-factories

D. Epifanov et. al., PL B65 (2007)

Still not published (presented in conferences e.g. Tau2010 Manchester)

\square Results from our fits to Belle data
DB, Escribano, and Jamin, EPJC 59 (2009)
DB, Escribano, and Jamin, JHEP 09 (2010)

- $K_{l 3}$: the main route towards $\left|V_{u s}\right|$

Leutwyler and Roos 1984

- Form factors: Parametrization in terms of f_{+}and f_{0}

$$
\left\langle\pi^{-}(k)\right| \bar{s} \gamma^{\mu} u\left|K^{0}(p)\right\rangle=\left[(p+k)^{\mu}-\frac{\Delta_{K \pi}}{t}(p-k)^{\mu}\right]_{\substack{\text { vector } \\ f_{+}(t) \\ f_{+}(0)=f_{0}(0) \\ t}}^{\substack{\text { scälár }}}
$$

$$
\begin{aligned}
\Gamma_{K_{l 3}} \propto\left|V_{u s}\right|^{2}\left[\left.f_{+}(0)\right|^{2} I\left(K_{l 3}\right) \quad \begin{array}{l}
\text { fattice } \\
\tilde{f}_{+, 0}(s)
\end{array}>\right.\text { (R)ChPT, DR, Latt. }
\end{aligned}
$$

$$
\tilde{f}_{+}(t)=f_{+}(t) / f_{+}(0) \longrightarrow \text { Energy dependence }
$$

- Phase space integrals

$$
I\left(K_{l 3}\right)=\frac{1}{m_{K}^{8}} \int_{m_{l}^{2}} d t \lambda^{3 / 2}(t)(\text { p.s. })\left[\tilde{\tilde{f}}_{+}^{2}(t)_{l}^{\prime}+\eta\left(t, m_{i}\right) \tilde{f}_{0}(t)^{2}\right]
$$

strangeness changing form factors

$\tilde{f}_{+}(\sqrt{s}) \mid$

$$
\begin{array}{r}
\langle K \pi| \bar{s} \gamma^{\mu} u|0\rangle=\left[(k-p)^{\mu}+\frac{\Delta_{K \pi}}{s}(p+k)^{\mu}\right] f_{+}(s)-(p+k)^{\mu} \frac{\Delta_{K \pi}}{s} f_{0}(s) \\
\text { Crossed channel }
\end{array}
$$

strangeness changing form factors

$\begin{array}{rr}\tilde{f}_{+}(\sqrt{s}) \mid & \langle K \pi| \bar{s} \gamma^{\mu} u|0\rangle=\left[(k-p)^{\mu}+\frac{\Delta_{K \pi}}{s}(p+k)^{\mu}\right] f_{+}(s)-(p+k)^{\mu} \frac{\Delta_{K \pi}}{s} f_{0}(s) \\ \text { Crossed channel }\end{array}$

DB, Escribano, and Jamin, EPJC 59 (2009)

see also the works by Bernard, Oertel, Passemar, and Stern
Description of $f_{+}(s)$ with three subtractions

$$
\tilde{f}_{+}(s)=\exp \left[\alpha_{1} \frac{s}{m_{\pi}^{2}}+\frac{1}{2} \alpha_{2} \frac{s^{2}}{m_{\pi}^{4}}+\frac{s^{3}}{\pi} \int_{s_{\mathrm{th}}}^{s_{\mathrm{cut}}} \frac{d s^{\prime}}{s^{\prime 3}} \frac{\delta\left(s^{\prime}\right)}{s^{\prime}-s-i \epsilon}\right]
$$

- We employ a phase with two resonances
- Parameters of the fit: $\underline{\lambda}_{+}^{\prime}, \lambda_{+}^{\prime \prime}, m_{1}, \Gamma_{1}, m_{2}, \Gamma_{2}, \gamma$

Taylor coefficients
Resonance parameters
fit with constrains from $K_{l 3}$ decays [see M. Antonelli's talk]

$$
\lambda_{+}^{\prime} \times 10^{3}=25.49 \pm(0.30)_{\mathrm{stat}} \pm(0.06)_{s_{\mathrm{cut}}}
$$

Model

$$
\lambda_{+}^{\prime \prime} \times 10^{4}=12.22 \pm(0.10)_{\mathrm{stat}} \pm(0.10)_{s_{\mathrm{cut}}}
$$

Model

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

phase-space integrals (needed for $V_{u s}$ extraction from $K_{l 3}$)

$$
\begin{aligned}
& I_{K_{l_{3}}}=\frac{1}{m_{K}^{2}} \int_{m_{l}^{2}}^{\left(m_{K}-m_{\pi}\right)^{2}} \mathrm{~d} t \lambda(t)^{3 / 2}\left(1+\frac{m_{l}^{2}}{2 t}\right)\left(1-\frac{m_{l}^{2}}{t}\right)^{2}\left(\left|\tilde{f}_{+}(t)\right|^{2}+\frac{3 m_{l}^{2}\left(m_{K}^{2}-m_{\pi}^{2}\right)^{2}}{\left(2 t+m_{l}^{2}\right) m_{K}^{4} \lambda(t)}\left|\tilde{f}_{0}(t)\right|^{2}\right) \\
& \lambda(t)=1+t^{2} / m_{K}^{4}+r_{\pi}^{4}-2 r_{\pi}^{2}-2 r_{\pi}^{2} t / m_{K}^{2}-2 t / m_{K}^{2}
\end{aligned}
$$

	This Work:	$K_{l_{3}}$ disp.	$K_{l_{3} \text { quad. }}$	
$I_{K_{e_{3}}}$	$0.15466(18)$	$0.15476(18)$	$0.15457(20)$	
$I_{K_{\mu_{3}}}$	$0.10276(10)$	$0.10253(16)$	$0.10266(20)$	
$I_{K_{e_{3}}}$	$0.15903(18)$	$0.15922(18)$	$0.15894(21)$	
$I_{K_{\mu_{3}}}^{+}$	$0.10575(11)$	$0.10559(17)$	$0.10564(20)$	

results on $K \pi$ dynamics

$$
\begin{aligned}
& m_{K^{*}(892)^{ \pm}}= \\
& 892.03 \pm(0.19)_{\text {stat }} \pm(0.44)_{\text {sys }}
\end{aligned}
$$

- In principle, one can obtain $V_{u s}$ from the fit to $\tau \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}$
- With Belle spectrum the uncertainty is too large
\square We fix in the fit $f_{+}(0)^{2}\left|V_{u d}\right|^{2}$

conclusion

\square With hadronic tau decay data from b-factories one can improve
■ $V_{u s}$ (direct and indirect through form factors)
■ m_{S} (not covered here)
$\square \alpha_{s}$
$\square K \pi$ dynamics (resonance masses, phase shifts, threshold parameters...)

