XVII SuperB Workshop and Kick Off Meeting

$\gamma \gamma$ Physics: on-going activities and Super-B

Federico Nguyen - INFN Roma TRE
La Biodola (LI) - May, 30th 2011

An outline (from experience at low energy...)

$>$ main motivations and recent results:
where to improve...

$$
e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma^{*} \gamma^{*} \rightarrow e^{+} e^{-} \mathrm{X}
$$

$>$ current activities: KLOE as an example
$>$ opportunities @ Super-B

> conclusions

Recent results with PS mesons

30-05-2011

PseudoScalar mesons: $\gamma \gamma$ widths

$$
\mathrm{N}_{e^{+} e^{-} \rightarrow e^{+} e^{-} X}=L_{e e} \int \frac{\mathrm{dF}}{\mathrm{dW}_{\gamma \gamma}} \sigma_{\gamma \gamma \rightarrow X}\left(\mathrm{~W}_{\gamma \gamma}\right) \mathrm{dW}_{\gamma \gamma}
$$

for narrow pseudoscalar mesons (e.g. $\pi^{0}, \eta, \eta^{\prime}, \eta_{c}(1 S)$, etc...):

$$
\sigma_{\gamma \gamma \rightarrow X}\left(q_{1}, q_{2}\right) \propto \Gamma_{X \rightarrow \gamma \gamma} \frac{8 \pi^{2}}{M_{X}} \delta\left(\left(q_{1}+q_{2}\right)^{2}-M_{X}^{2}\right)\left|F\left(q_{1}^{2}, q_{2}^{2}\right)\right|^{2}
$$

absolute measurement: either your decay channel is $X \rightarrow \gamma \gamma$ or must know $B R(X \rightarrow f)$... often the limiting factor

PseudoScalar mesons: $\gamma \gamma$ widths

$$
\mathrm{N}_{e^{+} e^{-} \rightarrow e^{+} e^{-} X}=L_{e e} \int \frac{\mathrm{dF}}{\mathrm{dW}_{\gamma \gamma}} \sigma_{\gamma \gamma \rightarrow X}\left(\mathrm{~W}_{\gamma \gamma}\right) \mathrm{dW}_{\gamma \gamma}
$$

for narrow pseudoscalar mesons (e.g. $\pi^{0}, \eta, \eta^{\prime}, \eta_{c}(1 S)$, etc...):

$$
\sigma_{\gamma \gamma \rightarrow X}\left(q_{1}, q_{2}\right) \propto \Gamma_{X \rightarrow \gamma \gamma} \frac{8 \pi^{2}}{M_{X}} \delta\left(\left(q_{1}+q_{2}\right)^{2}-M_{X}^{2}\right)\left|F\left(q_{1}^{2}, q_{2}^{2}\right)\right|^{2}
$$

absolute measurement: either your

decay channel is $X \rightarrow \gamma \gamma$ or must know $B R(X \rightarrow f)$... often the limiting factor
spectrum measurement, as a function of a single momentum transfer, fixing or integrating over the other one 2-dim PDF not yet measured

PS mixing angle and the gluonium in η^{\prime}

$$
\begin{array}{ll}
\frac{\Gamma(\eta \rightarrow \gamma \gamma)}{\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)}=\left(\frac{m_{\eta}}{m_{\pi^{0}}}\right)^{3} \frac{1}{9}\left(5 \cos \varphi_{P}-\sqrt{2} \frac{f_{n}}{f_{s}} \sin \varphi_{P}\right)^{2} & \left|\boldsymbol{\eta}^{\prime}\right\rangle=\boldsymbol{X}_{\boldsymbol{\eta}^{\prime}} \frac{\mathbf{1}}{\sqrt{2}}|\boldsymbol{u} \overline{\boldsymbol{u}}+\boldsymbol{d} \overline{\boldsymbol{d}}\rangle+\boldsymbol{Y}_{\boldsymbol{\eta}^{\prime}}|\boldsymbol{s} \overline{\boldsymbol{s}}\rangle+\boldsymbol{Z}_{\boldsymbol{\eta}^{\prime}}|\boldsymbol{g} \boldsymbol{u} \boldsymbol{u}\rangle \\
\frac{\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)}{\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)}=\left(\frac{m_{\eta}^{\prime}}{m_{\pi^{0}}}\right)^{3} \frac{1}{9}\left(5 \sin \varphi_{P}+\sqrt{2} \frac{f_{n}}{f_{s}} \cos \varphi_{P}\right)^{2} \cos ^{2} \phi_{G} & |\boldsymbol{\eta}\rangle=\boldsymbol{\operatorname { c o s }} \boldsymbol{\varphi}_{P} \frac{\mathbf{1}}{\sqrt{2}}|\boldsymbol{u} \overline{\boldsymbol{u}}+\boldsymbol{d} \overline{\boldsymbol{d}}\rangle-\sin \boldsymbol{\varphi}_{P}|\boldsymbol{s} \overline{\boldsymbol{s}}\rangle
\end{array}
$$

present status
with dominant $\eta^{\prime} B R^{\prime} s$ to 1%
$X_{\eta^{\prime}}=\cos \phi_{G} \sin \varphi_{P}$
$Y_{\eta^{\prime}}=\cos \phi_{G} \cos \varphi_{P}$
$Z_{\eta^{\prime}}=\sin \phi_{G}$

30-05-2011

PS form factors: from models to the $(g-2)_{\mu}$ saga

important to test phenomenological models, more or less QCD/ChPT inspired..., but impacts also the $(g-2)_{\mu}$

$$
F\left(k_{1}^{2}, k_{2}^{2}\right)=\frac{m_{\rho}^{2}}{\left(m_{\rho}^{2}-k_{1}^{2}-k_{2}^{2}\right)}
$$

e.g.

$$
F\left(k_{1}^{2}, k_{2}^{2}\right)=\frac{m_{\rho}^{4}-\frac{4 \pi^{2} F_{x}^{2}}{N_{c}}\left(k_{1}^{2}+k_{2}^{2}\right)}{\left(m_{\rho}^{2}-k_{1}^{2}\right)\left(m_{\rho}^{2}-k_{2}^{2}\right)}
$$

from F.Jegerlehner \& A.Nyffeler, Phys. Rept,477(2009)1
Standard model theory and experiment comparison [in units 10^{-11}].

Contribution	Value	Error
QED incl. 4-loops + LO 5-loops	116584718.1	0.2
Leading hadronic vacuum polarization	6903.0	52.6
Subleading hadronic vacuum polarization	-100.3	1.1
Hadronic light-by-light	116.0	39.0
Weak incl. 2-loops	153.2	1.8
Theory	116591790.0	64.6
Experiment	116592080.0	63.0
Exp. - The. 3.2 standard deviations	290.0	90.3

PS transition form factors: L-by-L

$$
\mathcal{F}_{\pi^{0 *} \gamma^{*} \gamma^{*}}\left(\left(q_{1}+q_{2}\right)^{2}, q_{1}^{2}, q_{2}^{2}\right)
$$

Contribution	N / JN
$\pi^{0}, \eta, \eta^{\prime}$	99 ± 16
π, K loops	-19 ± 13
π, K loops + other subleading in N_{c}	-
axial vectors	22 ± 5
scalars	-7 ± 2
quark loops	21 ± 3
total	116 ± 39
$\mathrm{LbL} ;$ had $\times 10^{11}$	

- not clear how to constrain contributions from data
- pseudoscalar pole contribution dominates, many
theory approaches, perhaps a cleaner
case $w /$ only 2 independent scales, $F\left(m_{p s}{ }^{2}, q_{1}{ }^{2}, q_{2}{ }^{2}\right)$

Federico Nguyen

An example: π^{0} transition form factor

An example: π^{0} transition form factor

Measuring η and η^{\prime} does not clarify

good agreement with CLEO in the overlapping regions, but...

Measuring η and η ' does not clarify

Low Q^{2} region unexplored, so far

the region relevant to the $\mathrm{g}-2$ is $\mathrm{Q}<1.5 \mathrm{GeV}$ for the 3 lightest PS mesons

Federico Nguyen
30-05-2011

Recent results with scalar mesons

Low mass scalar mesons: puzzling since the 70's

Maiani et al. :: A new look at scalar mesons as $4 q$ structures - PRL93(2004)212002
`t Hooft et al. :: A theory of scalar mesons - PLB662(2008)424

$4 q$ structures explain the inverted mass spectrum (Jaffe)

M(MeV)

Recent measurements of $\gamma \gamma \rightarrow \pi \pi$

Recent measurements of $\gamma \gamma \rightarrow \pi \pi$

Searching for $\gamma \gamma \rightarrow \sigma(600) \rightarrow 2 \pi^{0}$

$\pi^{+} \pi^{-}$harder than $\pi^{0} \pi^{0}$ channel:

1) $\mu^{+} \mu^{-}$background (need robus \dagger particle ID)
2) sizeable continuum $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$ at tree level in QED

$$
\sigma(\gamma \gamma \rightarrow \sigma(600)) \propto \Gamma(\sigma(600) \rightarrow \gamma \gamma)
$$

$\Gamma(\gamma \gamma) \mathrm{keV}$		
composition	predictions	author(s)
$(\bar{u} u+\bar{d} d) / \sqrt{2}$	4.0	Babcock \& Rosner 73
$\overline{s s}$	0.2	Barnes 74
$\overline{[n s]}[n s], n=(u, d)$	0.27	Achasov et al. 75
$\bar{K} K$	0.6 0.22	Barnes 76 Hanhart et al. 77

- Crystal Ball, PRD41 (1990) 3324
> σ with BES values
>2 loop χ PT

Resonant contribution $\gamma \rightarrow \sigma \rightarrow \pi^{0} \pi^{0}$
Eur. Phys. J. C 47, 65-70 (2006)
F.Nguyen, F.Piccinini \& A.Polosa
from the radiative width
\rightarrow infer the structure

Current activities: for example KLOE/KLOE-2

Measuring $\gamma \gamma$ @ KLOE

$240 \mathrm{pb}^{-1}$ taken @ $\sqrt{\mathrm{s}}=1 \mathrm{GeV}$, to suppress background from ϕ decays

Calorimeter, EmC: B=0.52 T Drift Chamber, DC:
Pb/Scint. Fiber, 4880 PMTs $\mathbf{9 0 \%} \mathrm{He}, \mathbf{1 0} \% \mathrm{C}_{4} \mathrm{H}_{10}$ $\sigma_{\mathrm{E}} / \mathrm{E}=0.057 / \sqrt{ } \mathrm{E}(\mathrm{GeV})$ $\sigma_{p} / \mathbf{p}=0.4 \%$ for $\theta>45^{\circ}$
$\sigma_{\mathrm{t}}=57 \mathrm{ps} / \sqrt{ } \mathrm{E}(\mathrm{GeV}) \oplus 100 \mathrm{ps}$

$$
\sigma_{\mathrm{r} \phi}=\mathbf{0 . 1 5} \mathrm{mm}, \sigma_{\mathrm{z}}=2 \mathrm{~mm}
$$

Search for $\gamma \gamma \rightarrow \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ @ KLOE

$\operatorname{BR}\left(\eta \rightarrow \pi^{+} \pi \pi^{0}\right)=22.73 \% \quad 2$ photons +2 tracks with opposite charge

- $\gamma \gamma$ pairing

$$
\chi_{\eta}^{2}=\sum \frac{\left(P_{i}-P_{i}^{\text {meas }}\right)^{2}}{\sigma_{i}^{2}}+\sum \lambda_{j}^{k} C_{j}\left(P_{1}^{k} \ldots P_{N}^{k}\right)
$$

- charged pion ID
- kinematic fit, $x_{n}{ }^{2}$
- $M_{\text {miss }}{ }^{2}$ vs p_{L} fits

$$
\begin{aligned}
& \mathbf{m}_{\gamma}^{2}=\mathbf{m}_{\pi 0}^{2} \\
& \mathbf{m}_{\pi+\pi-\gamma}^{2}=\mathbf{m}_{\eta}^{2} \\
& \mathbf{t}_{\gamma}-\left|\underline{\mathbf{r}}_{\gamma}\right| / \mathbf{c}=\mathbf{0} \text { for } \mathbf{2} \boldsymbol{\gamma}
\end{aligned}
$$

$$
\begin{aligned}
M_{m i s s}^{2} & =s+m_{\eta}^{2}-2 \sqrt{s} E_{T}\left(1-\frac{p_{L}^{2}}{E_{T}^{2}}\right)^{1 / 2} \\
& \simeq s+m_{\eta}^{2}-2 \sqrt{s} E_{T}-\sqrt{s} \frac{p_{L}^{2}}{E_{T}}
\end{aligned}
$$

Search for $\gamma \gamma \rightarrow \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ @ KLOE

Signal

η	0.196
$\eta \gamma$	9.1×10^{-3}
$\omega \pi^{0}$	6.5×10^{-5}
$\pi^{+} \pi^{-} \pi^{0}$	1.5×10^{-5}
$K^{+} K^{-}$	1.9×10^{-5}
$K_{S} K_{L}$	2.6×10^{-5}
$e^{+} e^{-} \gamma$	$\mathcal{O}\left(10^{-7}\right)$

$N($ data $)$ after cuts $=1576$

$$
n_{\mathrm{ev}}=650
$$

Search for $\gamma \gamma \rightarrow \eta \rightarrow 3 \pi^{0} @$ KLOE

$\operatorname{BR}\left(\eta \rightarrow 3 \pi^{0}\right)=\mathbf{3 2 . 5 7} \%$

- $\gamma \gamma$ pairing to 3 pions
- kinematic fit, $x_{n}{ }^{2}$
- most energetic $\gamma \mathrm{E}<260 \mathrm{MeV}$

6 photons and NO tracks

$$
\begin{aligned}
& \chi_{\eta}^{2}=\sum \frac{\left(P_{i}-P_{i}^{\text {meas }}\right)^{2}}{\sigma_{i}^{2}} \\
& \quad+\sum \lambda_{j}^{k} C_{j}\left(P_{1}^{k} \ldots P_{N}^{k}\right) \\
& \mathbf{m}_{6 \gamma}^{2}=\mathbf{m}_{\eta}^{2} \\
& \mathbf{t}_{\boldsymbol{\gamma}}-\left|\underline{\mathbf{r}}_{\gamma}\right| / \mathbf{c}=\mathbf{0} \text { for } \mathbf{6} \boldsymbol{\gamma}
\end{aligned} \quad \begin{aligned}
& \text { only irneducibte background } \\
& \text { is } \text { e }^{+} e^{-} \rightarrow \eta\left(\rightarrow \pi^{0} \pi^{0} \pi^{0}\right) \gamma_{\text {lost }}
\end{aligned}
$$

Federico Nguyen

Search for $\gamma \gamma \rightarrow \eta \rightarrow 3 \pi^{0} @$ KLOE

2725 data events after all cuts

from the $\eta \gamma$ events in the fitted spectrum:

$$
\begin{aligned}
& \sigma\left(\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \eta \gamma, \mathbf{1} \mathrm{GeV}\right)= \\
& \text { o. } 875 \pm \text { o.oo9 nb } \\
& \text { (statistical error only) }
\end{aligned}
$$

Federico Nguyen
30-05-2011

Search for $\gamma \gamma \rightarrow \eta \rightarrow 3 \pi^{0} @$ KLOE

Federico Nguyen
30-05-2011

MC simulation of $\gamma \gamma \rightarrow \sigma(600) \rightarrow 2 \pi^{0}$

the complete 4 body simulation, EPJC47 (2006) 65, is compared with the Weizsäcker-Williams approx. (head on collision of 2 quasi-real $\gamma \gamma$) A. Courau \& G. Pancheri, The DA Φ NE Physics Handbook, Vol. 2, 1992

Search for $\gamma \gamma \rightarrow \sigma(600) \rightarrow 2 \pi^{0} @$ KLOE

$-\gamma \gamma$ pairing to 2 pions, $\chi_{\pi \pi}^{2}<4$

- 4 photons and NO tracks
$-\mathrm{p}_{\mathrm{T}}(4 \gamma)<120 \mathrm{MeV}$
- $\Sigma_{4 \gamma} / \Sigma_{C A L O}>0.75$
- promptness enforced (\dagger_{γ} cuts)

Federico Nguyen
30-05-2011

Search for $\gamma \gamma \rightarrow \sigma(600) \rightarrow 2 \pi^{0} @$ KLOE

KLOE-2 plans

Detector upgrade for the first KLOE-2 run : $2+2$ detector stations for leptons in $e^{+} e^{-\rightarrow e^{+}} e^{-} \gamma^{*} \gamma^{*} \rightarrow e^{+} e^{-} X$

LET (Low Energy Taggers) are LYSO calorimeters placed inside KLOE
HET (High Energy Taggers) are scintillator hodoscopes placed 11 m from the IP

HET: $e^{ \pm}$of 425-490 MeV LET: $e^{ \pm}$of $160-230 \mathrm{MeV}$

$\gamma \gamma$ Physics @ Super-B? so nice a product: "incredible cross section" x "incredible luminosity"

General considerations on yields @ Super-B

PS meson production: flavour factories comparison

$$
\sigma_{e^{+} e^{-} \rightarrow e^{+} e^{-} X}=\frac{16 \alpha^{2} \Gamma_{X \gamma \gamma}}{m_{X}^{3}}\left(\ln \frac{E_{b}}{m_{e}}\right)^{2}\left(\left(y^{2}+2\right)^{2} \ln \frac{1}{y}-\left(1-y^{2}\right)\left(3+y^{2}\right)\right) \quad y=m_{X} /\left(2 E_{b}\right)
$$

$\sigma_{e^{+} e^{-} \rightarrow e^{+} e^{-} P S}[\mathrm{pb}]$			
$\sqrt{s}(\mathrm{GeV})$	ϕ	J / ψ	$\Upsilon(4 S)$
π^{0}	261	638	1283
η	45	279	781
η^{\prime}	8	245	928
$\eta_{c}(1 S)$	-	0.2	3.6

flipping of the $\eta-\eta^{\prime}$ cross sections, because phase space gets marginal wrt the partial width: $\Gamma_{\eta^{\prime} \gamma y} \sim 10 \Gamma_{\text {nyy }}$ even at equal luminosity... high $\sqrt{ }$ s matters!

QED tests with $\left.\left.e^{+} e^{-} \rightarrow e^{+} e^{-}\right|^{+}\right|^{-}(I=e, \mu, \tau)$

$\checkmark O\left(\alpha^{2}\right)$ tests of QED through C,P,CP-violating asymmetries
\checkmark tagger providing 4-momentum of at least 1 e+/e-is needed
\checkmark...a way to find the "unexpected"?

- HyperCP excess, for events $\boldsymbol{\Sigma}^{+} \rightarrow \mathrm{p} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$
http://arxiv.org/abs/hep-ex/0501014

light (pseudo)scalar boson
Federico Nguyen
30-05-2011

Conclusions and prospects

\checkmark important $\gamma \gamma$ measurements from the B-factories, only limit is the trigger efficiency for reaching lower momenta
\checkmark KLOE complementarity: first evidence of $\gamma \gamma \rightarrow \eta$ @ 1 GeV in 2 different channels, $O(2000)$ candidate events of $\gamma \gamma \rightarrow 2 \pi^{0}$ at threshold
\checkmark thanks to the high luminosity, Super-B may probe the low mass region: final state $e^{ \pm}$taggers with trigger decision?
\checkmark unique opportunities @ Super-B: rare phenomena in $\gamma \gamma$ processes!

$$
\begin{aligned}
& \text { Empty bunches }
\end{aligned}
$$

PS meson production: flavour factories comparison

$$
\sigma_{e^{+} e^{-} \rightarrow e^{+} e^{-} X}=\frac{16 \alpha^{2} \Gamma_{X \gamma \gamma}}{m_{X}^{3}}\left(\ln \frac{E_{b}}{m_{e}}\right)^{2}\left(\left(y^{2}+2\right)^{2} \ln \frac{1}{y}-\left(1-y^{2}\right)\left(3+y^{2}\right)\right) \quad y=m_{X} /\left(2 E_{b}\right)
$$

$\sigma_{e^{+} e^{-} \rightarrow e^{+} e^{-} P S}[\mathrm{pb}]$			
$\sqrt{s}(\mathrm{GeV})$	ϕ	J / ψ	$\Upsilon(4 S)$
π^{0}	261	638	1283
η	45	279	781
η^{\prime}	8	245	928
$\eta_{c}(1 S)$	-	0.2	3.6

even at equal luminosity ... high $\sqrt{ }$ s matters!
for example $4 \times 10^{10} \eta^{\prime}$ produced

final state F	$\mathrm{BR}\left(\eta^{\prime} \rightarrow F\right)(\%)$	preferable chain	$\mathrm{BR}_{\text {eff }}(\%)$
$\pi^{+} \pi^{-} \eta$	44.6 ± 1.4	$\pi^{+} \pi^{-} \eta(\rightarrow 2 \gamma) \leftrightarrow \pi^{+} \pi^{-} 2 \gamma$	17.5
$\pi^{+} \pi^{-} \gamma$	29.4 ± 0.9		
$\pi^{0} \pi^{0} \eta$	20.7 ± 1.2	$\pi^{0} \pi^{0} \eta\left(\rightarrow \pi^{+} \pi^{-} \pi^{0}\right) \leftrightarrow \pi^{+} \pi^{-} 6 \gamma$	4.7
$\omega \gamma$	3.02 ± 0.31	$\omega\left(\rightarrow \pi^{+} \pi^{-} \pi^{0}\right) \gamma \leftrightarrow \pi^{+} \pi^{-} 3 \gamma$	2.7
$\gamma \gamma$	2.10 ± 0.12		

flipping of the $\eta-\eta^{\prime}$ cross sections, because phase space gets marginal wrt the partial width: $\Gamma_{\eta^{\prime} \gamma y} \sim 10 \Gamma_{\text {nyy }}$
\checkmark partial wave analysis
$\checkmark \Delta \log L=5238$, when omitting the σ

$\left\{\begin{array}{l}B W_{\sigma}=\frac{1}{m_{\sigma}^{2}-s-i m_{\sigma} \Gamma_{\sigma}} \\ \Gamma_{\sigma} \text { is a constant }\end{array}\right.$
$\left\{\begin{array}{l}B W_{\sigma}=\frac{1}{m_{2}^{2}-\frac{s-i \sqrt{s} \Gamma^{2}(s)}{}} \\ \Gamma_{\sigma}(s)=\frac{g_{\sigma}^{2} \sqrt{\frac{3}{4}-m_{\pi}^{2}}}{8 \pi s}\end{array}\right.$
$\left\{\begin{array}{l}B W_{\sigma}=\frac{1}{m_{\sigma}^{2}-s-i \sqrt{\beta \Gamma_{\sigma}(s)}} \\ \Gamma_{\sigma}(s)=\alpha{\sqrt{\frac{s}{4}}-m_{\pi}^{2}}^{2}\end{array}\right.$,
$\int B W_{\sigma}=\frac{1}{m_{\sigma}^{2}-s-i m_{\sigma}\left(\Gamma_{1}(s)+\Gamma_{2}(s)\right)}$,
$\Gamma_{1}(s)=G_{1} \frac{\sqrt{1-4 m_{/}^{2} / s}}{\sqrt{1-4 m_{\pi}^{2} / m_{\sigma}^{2}}}$.

- $\frac{s-m_{\pi}^{2} / 2}{m_{\sigma}^{2}-m_{\pi}^{2} / 2} e^{-\left(s-m_{\sigma}^{2}\right) / 4 \beta^{2}}$,
$\Gamma_{2}(s)=G_{2} \frac{\sqrt{1-16 m_{\pi}^{2} / s}}{\sqrt{1-16 m_{\AA}^{2} / m_{\sigma}^{2}}} \frac{1+e^{\Lambda\left(s_{0}-m_{\sigma}^{2}\right)}}{1+e^{\Lambda\left(s_{0}-s\right)}}$.
$\mathrm{J} / \psi \rightarrow \omega \mathrm{f}_{\mathbf{2}}(\mathbf{1 2 7 0})$
$\omega \sigma$
$\omega \mathrm{f}_{0}(\mathbf{9 8 0})$
$b_{1}(1235) \pi$

