

yy Physics: on-going activities and Super-B

Federico Nguyen - INFN Roma TRE

La Biodola (LI) - May, 30th 2011

An outline (from experience at low energy...)

main motivations and recent results:

where to improve...

> current activities: KLOE as an example

> opportunities @ Super-B

conclusions

Recent results with PS mesons

PseudoScalar mesons: yy widths

$$\mathbf{N}_{e^+e^- \to e^+e^- X} = L_{ee} \int \frac{\mathrm{dF}}{\mathrm{dW}_{\gamma\gamma}} \sigma_{\gamma\gamma \to X}(\mathbf{W}_{\gamma\gamma}) \mathrm{dW}_{\gamma\gamma}$$

for narrow pseudoscalar mesons (e.g. π^0 , η , η' , $\eta_c(1S)$, etc...):

$$\sigma_{\gamma\gamma \to X}(q_1, q_2) \propto \Gamma_{X \to \gamma\gamma} \frac{8\pi^2}{M_X} \delta((q_1 + q_2)^2 - M_X^2) \left| F(q_1^2, q_2^2) \right|^2$$

absolute measurement: either your decay channel is $X \rightarrow \gamma\gamma$ or must know BR(X \rightarrow f)... often the limiting factor

PseudoScalar mesons: yy widths

$$\mathbf{N}_{e^+e^- \to e^+e^- X} = L_{ee} \int \frac{\mathrm{dF}}{\mathrm{dW}_{\gamma\gamma}} \sigma_{\gamma\gamma \to X}(\mathbf{W}_{\gamma\gamma}) \mathrm{dW}_{\gamma\gamma}$$

for narrow pseudoscalar mesons (e.g. π^0 , η , η' , $\eta_c(1S)$, etc...):

$$\sigma_{\gamma\gamma \to X}(q_1, q_2) \propto \Gamma_{X \to \gamma\gamma} \frac{8\pi^2}{M_X} \delta((q_1 + q_2)^2 - M_X^2) \left[F(q_1^2, q_2^2)\right]^2$$

absolute measurement: either your decay channel is $X \rightarrow \gamma\gamma$ or must know BR(X \rightarrow f)... often the limiting factor

spectrum measurement, as a function of a single momentum transfer, fixing or integrating over the other one 2-dim PDF not yet measured

PS mixing angle and the gluonium in η'

PS form factors: from models to the $(g-2)_{\mu}$ saga

e.q.

important to test phenomenological models, more or less QCD/ChPT inspired..., but impacts also the $(g-2)_{\mu}$

$$F(k_1^2, k_2^2) = \frac{m_{\rho}^2}{(m_{\rho}^2 - k_1^2 - k_2^2)}$$

 $F(k_1^2, k_2^2) = \frac{m_{\rho}^4}{(2\pi)^2}$

$$=\frac{m_{\rho}^4-\frac{4\pi^2~F_{\pi}^2}{N_c}~(k_1^2+k_2^2)}{(m_{\rho}^2-k_1^2)(m_{\rho}^2-k_2^2)}$$

from F.Jegerlehner & A.Nyffeler, Phys. Rept, 477(2009)1

Standard model theory and experiment comparison [in units 10⁻¹¹].

Contribution	Value	Error	
QED incl. 4-loops + LO 5-loops	116584718.1	0.2	
Leading hadronic vacuum polarization	6 903.0	52.6	
Subleading hadronic vacuum polarization	-100.3	1.1	
Hadronic light-by-light	116.0	39.0	
Weak incl. 2-loops	153.2	1.8	
Theory	116591790.0	64.6	
Experiment	116592080.0	63.0	
Exp The. 3.2 standard deviations	290.0	90.3	

PS transition form factors: L-by-L

Contribution	N/JN
π^0,η,η^\prime	$99{\pm}16$
π, K loops	-19 ± 13
π, K loops + other subleading in N_c	. 9 8
axial vectors	22 ± 5
scalars	-7 ± 2
quark loops	21 ± 3
total	116 ± 39

 $\mathcal{F}_{\pi^{0*}\gamma^*\gamma^*}((q_1+q_2)^2, q_1^2, q_2^2)$

- not clear how to constrain contributions from data
- pseudoscalar pole contribution dominates, many theory approaches, perhaps a cleaner case w/ only 2 independent scales, $F(m_{PS}^2,q_1^2,q_2^2)$

An example: π^0 transition form factor

well known asymptotic limits from 1^{st} principles, how to interpolate? what about η , η' ?

Federico Nguyen 30-05-2011

An example: π^0 transition form factor

Federico Nguyen 30-05-2011

Measuring η and η' does not clarify

good agreement with CLEO in the overlapping regions, but...

Federico Nguyen 30-05-2011

Measuring η and η' does not clarify

Low Q^2 region unexplored, so far

the region relevant to the g-2 is Q<1.5 GeV for the 3 lightest PS mesons

Recent results with scalar mesons

Low mass scalar mesons: puzzling since the 70's

Maiani et al. :: A new look at scalar mesons as *4q* structures - PRL93(2004)212002 `t Hooft et al. :: A theory of scalar mesons - PLB662(2008)424

Recent measurements of $\gamma\gamma \rightarrow \pi\pi$

Recent measurements of $\gamma\gamma \rightarrow \pi\pi$

Searching for $\gamma\gamma \rightarrow \sigma(600) \rightarrow 2\pi^0$

- $\pi^+\pi^-$ harder than $\pi^0\pi^0$ channel: 1) $\mu^+\mu^-$ background (need robust
 - particle ID)
 - 2) sizeable continuum $\gamma\gamma \rightarrow \pi^+\pi^$ at tree level in QED

	$\Gamma(\gamma\gamma)$ keV	ĩ
composition	predictions	author(s)
$(\overline{u}u + \overline{d}d)/\sqrt{2}$	4.0	Babcock & Rosner 73
55	0.2	Barnes ⁷⁴
$\overline{[ns]}[ns], n = (u, d)$	0.27	Achasov et al. 75
$\overline{K}K$	0.6 0.22	Barnes ⁷⁶ Hanhart <i>et al</i> . ⁷⁷

 $\sigma(\gamma\gamma \to \sigma(600)) \propto \Gamma(\sigma(600) \to \gamma\gamma)$

from the radiative width → infer the structure

Current activities: for example KLOE/KLOE-2

Measuring $\gamma\gamma @ KLOE$

240 pb⁻¹ taken @ $\sqrt{s} = 1$ GeV, to suppress background from ϕ decays

 $\begin{array}{ll} Calorimeter, EmC: & B=0.52\ T\\ Pb/Scint.\ Fiber,\ 4880\ PMTs\\ \sigma_E/E=0.057/\sqrt{E}\ (GeV)\\ \sigma_t=57\ ps/\sqrt{E}\ (GeV)\oplus\ 100\ ps \end{array}$

Drift Chamber, DC: 90% He, 10% $C_4 H_{10}$ $\sigma_p/p = 0.4\%$ for $\theta > 45^{\circ}$ $\sigma_{r\phi} = 0.15$ mm, $\sigma_z = 2$ mm

Search for $\gamma\gamma \rightarrow \eta \rightarrow \pi^+\pi^-\pi^0$ @ KLOE

BR $(\eta \rightarrow \pi^+\pi^-\pi^0) = 22.73\%$ 2 photons + 2 tracks with opposite charge

$$\chi_{\eta}^{2} = \sum \frac{(P_{i} - P_{i}^{meas})^{2}}{\sigma_{i}^{2}} + \sum \lambda_{j}^{k} C_{j} (P_{1}^{k} ... P_{N}^{k})$$

- yy pairing
- charged pion ID
- kinematic fit, χ_{η}^2
- $M_{miss}^2 vs p_L fits$

$$\mathbf{m}^{2}_{\gamma\gamma} = \mathbf{m}^{2}_{\pi 0}$$
$$\mathbf{m}^{2}_{\pi + \pi - \gamma \gamma} = \mathbf{m}^{2}_{\eta}$$
$$\mathbf{t}_{\gamma} - |\underline{\mathbf{r}}_{\gamma}| / \mathbf{c} = \mathbf{0} \text{ for } 2\gamma$$

only irreducible background
is
$$e^+e^- \rightarrow \eta(\rightarrow \pi^+ \pi^- \pi^0) \gamma_{lost}$$

 η
 γ
 $E_{\gamma} \sim 350 \text{ MeV} \sim p_L(\eta)$

$$M_{miss}^{2} = s + m_{\eta}^{2} - 2\sqrt{s}E_{T} \left(1 - \frac{p_{L}^{2}}{E_{T}^{2}}\right)^{1/2}$$
$$\simeq s + m_{\eta}^{2} - 2\sqrt{s}E_{T} - \sqrt{s}\frac{p_{L}^{2}}{E_{T}}$$

Search for $\gamma\gamma \rightarrow \eta \rightarrow \pi^+\pi^-\pi^0$ @ KLOE

Search for $\gamma\gamma \rightarrow \eta \rightarrow 3\pi^0 @$ KLOE

BR($\eta \rightarrow 3\pi^0$) = 32.57%

- $-\gamma\gamma$ pairing to 3 pions
- kinematic fit, χ_n^2
- most energetic γ E<260 MeV

6 photons and NO tracks

$$\chi_{\eta}^{2} = \sum \frac{(P_{i} - P_{i}^{meas})^{2}}{\sigma_{i}^{2}} + \sum \lambda_{j}^{k} C_{j} (P_{1}^{k} \dots P_{N}^{k})$$

$$\mathbf{m}_{6\gamma}^2 = \mathbf{m}_{\eta}^2$$

 $\mathbf{t}_{\gamma} - |\underline{\mathbf{r}}_{\gamma}| / \mathbf{c} = \mathbf{0} \text{ for } 6\gamma$

only irreducible background is $e^+e^- \rightarrow \eta (\rightarrow \pi^0 \pi^0 \pi^0) \gamma_{lost}$

Federico Nguyen 30-05-2011

Search for $\gamma\gamma \rightarrow \eta \rightarrow 3\pi^0 @$ KLOE

2725 data events after all cuts

Search for $\gamma\gamma \rightarrow \eta \rightarrow 3\pi^0$ @ KLOE

MC simulation of $\gamma\gamma \rightarrow \sigma(600) \rightarrow 2\pi^0$

Search for $\gamma\gamma \rightarrow \sigma(600) \rightarrow 2\pi^0$ @ KLOE

- $\gamma\gamma$ pairing to 2 pions, $\chi_{\pi\pi}^2 < 4$
- 4 photons and NO tracks
- $p_T(4\gamma) < 120 \text{ MeV}$
- $-\sum_{4\gamma} / \sum_{CALO} > 0.75$

0.1

- promptness enforced (t_{γ} cuts)

Search for $\gamma\gamma \rightarrow \sigma(600) \rightarrow 2\pi^0 @ \text{KLOE}$

KLOE-2 plans

Detector upgrade for the first KLOE-2 run : 2+2 detector stations for leptons in $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$

LET (Low Energy Taggers) are LYSO calorimeters placed inside KLOE HET (High Energy Taggers) are scintillator hodoscopes placed 11 m from the IP

HET: e[±] of 425-490 MeV LET: e[±] of 160-230 MeV

Federico Nguyen 30-05-2011

General considerations on yields @ Super-B

PS meson production: flavour factories comparison

$$\sigma_{e^+e^- \to e^+e^- X} = \frac{16\alpha^2 \Gamma_{X\gamma\gamma}}{m_X^3} \left(\ln \frac{E_b}{m_e} \right)^2 \left((y^2 + 2)^2 \ln \frac{1}{y} - (1 - y^2) (3 + y^2) \right) \quad y = m_X / (2E_b)$$

$\sigma_{e^+e^- \to e^+e^- PS} \; [\text{pb}]$			
$\sqrt{s} \; (\text{GeV})$	ϕ	J/ψ	$\Upsilon(4S)$
π^0	261	638	1283
η	45	279	781
η'	8	245	928
$\eta_c(1S)$		0.2	3.6

flipping of the η - η' cross sections, because phase space gets marginal wrt the partial width: $\Gamma_{\eta'\gamma\gamma} \sim 10 \Gamma_{\eta\gamma\gamma}$

even at equal luminosity... high \sqrt{s} matters!

Federico Nguyen 30-05-2011

QED tests with $e^+e^- \rightarrow e^+e^- |+|^-$ ($| = e, \mu, \tau$)

- \checkmark O(α^2) tests of QED through C,P,CP-violating asymmetries
- ✓ tagger providing 4-momentum of at least 1 e+/e- is needed
- ✓ ...a way to find the "unexpected"?
- HyperCP excess, for events $\Sigma^+ \rightarrow p \mu^+ \mu^-$

http://arxiv.org/abs/hep-ex/0501014

 interpretation as sgoldstino S and possible search in events

$$e^+e^- \rightarrow Se^+e^- \rightarrow \mu^+\mu^-e^+e^-$$
,

$$e^+e^- \rightarrow Se^+e^- \rightarrow \gamma\gamma e^+e^-$$

http://arxiv.org/abs/hep-ph/0509147

Federico Nguyen 30-05-2011

light (pseudo)scalar boson

 \checkmark important $\gamma\gamma$ measurements from the B-factories, only limit is the trigger efficiency for reaching lower momenta

✓ KLOE complementarity: first evidence of $\gamma\gamma \rightarrow \eta @ 1 \text{ GeV}$ in 2 different channels, *O*(2000) candidate events of $\gamma\gamma \rightarrow 2\pi^0$ at threshold

 \checkmark thanks to the high luminosity, Super-B may probe the low mass region: final state e[±] taggers with trigger decision?

 \checkmark unique opportunities @ Super-B: rare phenomena in $\gamma\gamma$ processes!

allow clear separation between consecutive bunches.

PS meson production: flavour factories comparison

$$\sigma_{e^+e^- \to e^+e^- X} = \frac{16\alpha^2 \Gamma_{X\gamma\gamma}}{m_X^3} \left(\ln \frac{E_b}{m_e} \right)^2 \left((y^2 + 2)^2 \ln \frac{1}{y} - (1 - y^2) (3 + y^2) \right) \quad y = m_X / (2E_b)$$

$\sigma_{e^+e^- \to e^+e^- PS} \ [\text{pb}]$			
$\sqrt{s} \; (\text{GeV})$	ϕ	J/ψ	$\Upsilon(4S)$
π^0	261	638	1283
η	45	279	781
η'	8	245	928
$\eta_c(1S)$		0.2	3.6

even at equal luminosity... high \sqrt{s} matters!

for example $4 \times 10^{10} \eta'$ produced

2	final state F	$BR(\eta' \to F) \ (\%)$	preferable chain	BR_{eff} (%)
	$\pi^+\pi^-\eta$	44.6 ± 1.4	$\pi^+\pi^-\eta(\to 2\gamma) \leftrightarrow \pi^+\pi^-2\gamma$	17.5
	$\pi^+\pi^-\gamma$	29.4 ± 0.9		
	$\pi^0\pi^0\eta$	20.7 ± 1.2	$\pi^0 \pi^0 \eta (\to \pi^+ \pi^- \pi^0) \leftrightarrow \pi^+ \pi^- 6\gamma$	4.7
	$\omega\gamma$	3.02 ± 0.31	$\omega(\to\pi^+\pi^-\pi^0)\gamma\leftrightarrow\pi^+\pi^-3\gamma$	2.7
	$\gamma\gamma$	2.10 ± 0.12		

flipping of the η - η' cross sections, because phase space gets marginal wrt the partial width: $\Gamma_{\eta'\gamma\gamma} \sim 10 \Gamma_{\eta\gamma\gamma}$

