

**** XVII SuperB Workshop and Kick Off Meeting **** 29/05-02/06 2011

La Biodola – Isola d'Elba – Italy

Time-dependent CP asymmetries in D (and B) decays

A.J. Bevan - G. Inguglia - B. Meadows

30-05-2011
Gianluca Inguglia
Particle Physics Research Centre
Queen Mary University of London
g.inguglia@qmul.ac.uk

Outline

Motivations

The CKM matrix and the UT's

Time-dependent formalism (correlated mesons)

Analysis of CP eigenstates

 $D^0 \rightarrow K^+ \ K^- \ , \ \pi^+ \ \pi^- \ , \rho^0 \ \rho^0$

Uncorrelated D 0 mesons (Y(4S) and LHCb)

Conclusions

Motivations (i)

- →Origin of CP violation is still one of the biggest questions in particle physics and cosmology today
- →CP violation has not yet been observed in charm, and a time-dependent analysis has not been done yet
- →Improvements in the precision and knowledge of the CKM unitarity triangle(s) is still possible
- →SuperB will offer a unique environment to perform precision tests of the standard model

CKM Matrix

$$V_{CKM} = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix} = \begin{vmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{vmatrix}$$

 $c_{ii} = \cos \theta_{ii}$; $s_{ii} = \sin \theta_{ii}$

 $\delta = cp \ violating \ phase$ $s_{13} \ll s_{23} \ll s_{12} \ll 1 (EXPERIMENTS)$

Wolfenstein parametrization expansion in terms of $\sin \theta_c$: $V_{us} = 0.225 = \lambda \rightarrow V_{ud} = 1 - \frac{\lambda^2}{2} + O(\lambda^3)$

 $V_{CKM} = \begin{vmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{vmatrix} + O(\lambda^4)$

 $s_{12} = \lambda = \frac{|V_{us}|}{|V_{us}|^2 + |V_{us}|^2}; s_{23} = A\lambda^2 = \lambda \left| \frac{V_{cb}}{V_{us}} \right|;$ $s_{13} e^{i\delta} = V_{ub}^* = A \lambda^3 (\rho + i \eta) = A \lambda^3 (\bar{\rho} + i \bar{\eta}) \frac{\sqrt{1 - A^2 \lambda^4}}{(\sqrt{1 - \lambda^2} 1 - A^2 \lambda^4 (\bar{\rho} + i \bar{\eta}))}$

CKM-M may be forced to be unitary to all order in λ!!

Buras parametrization: λ⁵

$$s_{12} = \lambda$$
, $s_{13} \sin \delta_{13} = A \lambda^3 \eta$, $\overline{\eta} = \eta \left[1 - \frac{\lambda^2}{2} + O(\lambda^4) \right]$
 $s_{23} = A \lambda^2$, $s_{13} \cos \delta_{13} = A \lambda^3 \rho$, $\overline{\rho} = \rho \left[1 - \frac{\lambda^2}{2} + O(\lambda^4) \right]$

$$V_{CKM} = \begin{vmatrix} 1 - \lambda^2/2 - \lambda^4/8 & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) + A\lambda^5(\overline{\rho} - i\overline{\eta})/2 \\ -\lambda + A^2\lambda^5[1 - 2(\overline{\rho} + i\overline{\eta})] & 1 - \lambda^2/2 - \lambda^4(1 + 4A^2)/8 & A\lambda^2 \\ A\lambda^3[1 - (\overline{\rho} + i\overline{\eta})] & -A\lambda^2 + A\lambda^4[1 - 2(\overline{\rho} + i\overline{\eta})]/2 & 1 - A^2\lambda^4/2 \end{vmatrix} + O(\lambda^6)$$

TAB 1	UTFit	CKM Fitter
λ	0.22545 ± 0.00065	0.22543 ± 0.00077
A	0.8095 ± 0.0095	$0.812^{+0.013}_{-0.027}$
ρ	0.135 ± 0.021	
η	0.367 ± 0.013	
$\overline{ ho}$	0.132 ± 0.020	0.144 ± 0.025
$\overline{\eta}$	0.358 ± 0.012	0.342 + 0.016

Why do we express the matrix in terms of $\overline{\rho} \, \overline{\eta}$?

Unitarity triangles

Unitarity conditions of the CKM matrix are translated into 6 possible unitary triangles in the complex plane. We illustrate two here.

$$V_{ud}^* V_{ub} + V_{cd}^* V_{cb} + V_{td}^* V_{tb} = 0$$

$$\alpha = arg \left[\frac{-V_{td} V_{tb}^{*}}{V_{ud} V_{ub}^{*}} \right] = (91.4 \pm 6.1)^{o}$$

$$\beta = arg \left[\frac{-V_{cd} V_{cb}^{*}}{V_{td} V_{tb}^{*}} \right] = (21.1 \pm 0.9)^{o} \quad \text{FROM}$$
EXPERIMENTS

$$y = arg \left[\frac{-V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right] = (74 \pm 11)^o$$

$$V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb} = 0$$

$$\alpha_{c} = arg \left[\frac{-V_{ub}^{*} V_{cb}}{V_{us}^{*} V_{cs}} \right] = (111.5 \pm 4.2)^{o}$$

$$\beta_{c} = arg \left[\frac{-V_{ud}^{*} V_{cd}}{V_{us}^{*} V_{cd}} \right] = (0.0350 \pm 0.0001)^{o}$$

$$\gamma_{c} = arg \left[\frac{-V_{ub}^{*} V_{cd}}{V_{ud}^{*} V_{cd}} \right] = (68.4 \pm 0.1)^{o}$$

$$\gamma_{c} = arg \left[\frac{-V_{ub}^{*} V_{cd}}{V_{ud}^{*} V_{cd}} \right] = (68.4 \pm 0.1)^{o}$$
OF VALUES IN TAB 1

What we are doing

Bigi and Sanda (hep-ph/9909479v2) pointed out that β_c is one of two other angles that should be measured (the other is β_s).

We explore the potential to study this (tri)angle for the first time.

It is unlikely we can measure β_c (<0.1 degrees) to high precision, but a larger value would signify new physics.

A TDCPV analysis can measure $2\beta_c + \Phi_{MIX}$. Current mixing phase average value is 10 degrees.

The mixing angle Φ_{MIX} is intrinsically interesting, and can, otherwise, only be measured in time-dependent Dalitz plot analyses of D0 to self-conjugate final states.

Time-dependent formalism (i)

Neutral meson systems exhibit mixing of mass eigenstates $|P_{1,2}\rangle$ where:

$$i\frac{d}{dt}\binom{|P_{1}\rangle}{|P_{2}\rangle} = \begin{pmatrix} M_{11} - \frac{i}{2}\Gamma_{11} & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*} & M_{22}^{*} - \frac{i}{2}\Gamma_{22}^{*} \end{pmatrix} \binom{|P^{0}\rangle}{|P^{0}\rangle} = H_{eff}\binom{|P^{0}\rangle}{|P^{0}\rangle}$$

$$|P_{1,2}\rangle = p |P^{0}\rangle \pm q |\overline{P^{0}}\rangle \qquad \qquad q^{2} + p^{2} = 1 \quad \text{normalize the wavefunction} \\ \frac{q}{p} = \sqrt{\frac{m_{12}^{*} - i \, \Gamma_{12}^{*} / 2}{M_{12} - i \, \Gamma_{12} / 2}}$$

$$H_{\textit{eff}} = M - \frac{i}{2} \Gamma \qquad \qquad M_{11} = M_{22}, \Gamma_{11} = \Gamma_{22} \leftarrow CPT \quad \textit{INVARIANCE}$$

$$M_{11} = M_{22}, \Gamma_{11} = \Gamma_{22}, \Im\left[\frac{\Gamma_{12}}{M_{12}}\right] = 0 \leftarrow CP \quad \textit{INVARIANCE}$$

$$\Im\left[\frac{\Gamma_{12}}{M_{12}}\right] = 0 \leftarrow T \quad \textit{INVARIANCE}$$

$$\frac{d}{dt}\langle \Psi(t)|\Psi(t)\rangle = -\langle \Psi(t)|\Gamma|\Psi(t)\rangle$$

Time-dependent formalism (ii)

The time-dependence of decays of P^0 ($\overline{P^0}$) to final state |f > are:

$$\Gamma\left(P^{0} \rightarrow f\right) \propto e^{-\Gamma_{1}|\Delta t|} \left[\frac{h_{+}}{2} + \frac{\Re\left(\lambda_{f}\right)}{1 + \left|\lambda_{f}\right|^{2}} h_{-} + e^{\left[\Delta \Gamma|\Delta t|/2\right]} \left(\frac{1 - \left|\lambda_{f}\right|^{2}}{1 + \left|\lambda_{f}\right|^{2}} \cos \Delta M \Delta t - \frac{2\Im\left(\lambda_{f}\right)}{1 + \left|\lambda_{f}\right|^{2}} \sin \Delta M \Delta t\right)\right]$$

$$- \overline{\Gamma}(\overline{P^{0}} \to f) \propto e^{-\Gamma_{1}|\Delta t|} \left[\frac{h_{+}}{2} + \frac{\Re(\lambda_{f})}{1 + |\lambda_{f}|^{2}} h_{-} - e^{[\Delta \Gamma|\Delta t|/2]} \left(\frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} \cos \Delta M \Delta t - \frac{2\Im(\lambda_{f})}{1 + |\lambda_{f}|^{2}} \sin \Delta M \Delta t \right) \right]$$

where: $h_{+-}=1\pm e^{\Delta\Gamma|\Delta t|}$, $\lambda_f=\frac{q}{p}\frac{\overline{A}}{A}$

λ_f very important!

We now obtain the time-dependent CP asymmetry

$$= A(\Delta t) = \frac{\overline{\Gamma}(\Delta t) - \Gamma(\Delta t)}{\overline{\Gamma}(\Delta t) + \Gamma(\Delta t)} = 2e^{\Delta \Gamma |\Delta t|/2} \frac{(|\lambda_f|^2 - 1)\cos\Delta M \Delta t + 2\Im(\lambda_f)\sin\Delta M \Delta t}{(1 + |\lambda_f|^2)h_+ + 2h_-\Re(\lambda_f)}$$

Mistag and Dilution

Non-trivial mis-tag probabilities from mis-reconstruction, wrongly associated slow pions, background, mixing of D meson used for tagging (small effect).

Mis-tag probability: ω ($\overline{\omega}$ for the anti-particle)

Dilution: $D=1-2\omega$

If one defines: $\Delta\omega = \omega - \overline{\omega}$

 \rightarrow the dilution becomes: D+Δω=1-2ω+Δω

One can account for mis-tag probabilities by considering the physical decay rate as function of Δt (correlated pairs):

$$\Gamma^{Phys}(\Delta t) = (1 - \overline{\omega}) \Gamma(\Delta t) + \omega \overline{\Gamma}(\Delta t)$$

$$\overline{\Gamma}^{Phys}(\Delta t) = \overline{\omega} \Gamma(\Delta t) + (1 - \omega) \overline{\Gamma}(\Delta t)$$

$$A^{Phys}(\Delta t) = \frac{\overline{\Gamma^{Phys}}(\Delta t) - \Gamma^{Phys}(\Delta t)}{\overline{\Gamma^{Phys}}(\Delta t) + \Gamma^{Phys}(\Delta t)} = -\Delta \omega + \frac{(D + \Delta \omega)e^{\Delta \Gamma |\Delta t|/2}(|\lambda_f|^2 - 1)\cos\Delta M \Delta t + 2\Im(\lambda_f)\sin\Delta M \Delta t}{(1 + |\lambda_f|^2)h_+/2 + h_-\Re(\lambda_f)}$$

Semi-leptonic tagging

A run at ψ (3772) can be made where the value of both ω and $\Delta\omega$ are effectively zero

 t_{TAG}

 $D^0, \overline{D^0}$ D mesons are produced in a correlated antisymmetric wave function. The Einstein-Podolsky-Rosen paradox implies that if at a time t_{tag} one decays then we identify the other as well.

 $\Psi(3770)$

PDG 2010

$$BR(D^0 \to K^{(*)-} e^+ \nu_e) = (2.17 \pm 0.16) 3.55 \pm 0.05$$

 $BR(D^0 \to K^{(*)-} \mu^+ \nu_\mu) = (1.98 \pm 0.24) 3.31 \pm 0.13$

$$BR(D^0 \to \pi^+ \pi^-) = (1.397 \pm 0.026) \times 10^{-3}$$

 $BR(D^0 \to K^+ K^-) = (3.94 \pm 0.07) \times 10^{-3}$

 $\pi^{\text{-}}, K^{\text{-}}, \rho^{0}$ π^{+}, K^{+}, ρ^{0} $\Delta z \approx \Delta t \beta \gamma c$

At time t_{TAG} the decays $D \rightarrow K^{-(+)} l^{+(-)} v_1$ account for 11% of all D decays and unambiguously assigns the flavour: D^0 is associated to a I^+ , $\overline{D^0}$ is associated to a I^-

> Assuming PDG values for BR and CLEO_c efficiency for double tagging we expect with semi-leptonic tag ~158000 for D $^0 \to \pi^+ \pi^-$

Analysis of CP eigenstates (i)

When exploring CP violation, ignoring long distance effects, the parameter λ may be written as:

$$\lambda_{f} = \left| \frac{q}{p} \right| e^{i\phi_{MIX}} \left| \frac{\overline{A}}{A} \right| e^{i\phi_{CP}} \qquad \phi_{MIX} : phase \ of \ D^{0} \overline{D^{0}} \ mixing \\ \phi_{CP} : overall \ phase \ of \ D^{0} \rightarrow f_{CP} (eigenstate)$$

$$A = |T| e^{i(\phi_T + \delta_T)} + |CS| e^{i(\phi_{CS} + \delta_{CS})} + |W| e^{i(\phi_W + \delta_W)} + \sum_{q=d,s,b} |P_q| e^{(i\phi_q + \delta_q)}$$

The following processes, as we will see, are tree dominated

$$D^{0} \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}, K^{+}K^{-}K^{0}, K^{0}\pi^{+}\pi^{-}$$

Assuming negligible the contribution due to P/CS/W amplitudes, then:

$$\lambda_f = \left| \frac{q}{p} \right| e^{i \phi_{MIX}} e^{+2i \phi_T^W}$$

Analysis of CP eigenstates (ii)

Analysis of CP eigenstates (iii)

	mode	η_{CP}	T	CS	P_q	W_{EX}
	$D^0 \to K^+ K^-$	+1	$V_{cs}V_{us}^*$		$V_{cq}V_{uq}^*$	
	$D^0 o K^0_S K^0_S$	+1				$V_{cs}V_{us}^* + V_{cd}V_{cd}^*$
-	$D^0 o \pi^+\pi^-$	+1	$V_{cd}V_{ud}^*$		$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$
	$D^0 o \pi^0 \pi^0$	+1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$
	$D^0 o ho^+ ho^-$	+1	$V_{cd}V_{ud}^*$		$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$
	$D^0 o ho^0 ho^0$	+1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$
	$D^0 o \phi \pi^0$	+1		$V_{cs}V_{us}^*$	$V_{cq}V_{uq}^*$	
	$D^0 o \phi ho^0$	+1		$V_{cs}V_{us}^*$	$V_{cq}V_{uq}^*$	
	$D^0 \to f^0(980)\pi^0$	-1		$V_{cs}V_{us}^* + V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	
	$D^0 ightarrow ho^0 \pi^0$	+1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$
	$D^0 o a^0 \pi^0$	-1		$V_{cd}V_{ud}^*$		$V_{cd}V_{ud}^*$
	$D^0 \to K_S^0 K_S^0 K_S^0$	+1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$
	$D^0 o K_L^0 K_S^0 K_S^0$	-1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$
	$D^0 \to K_L^0 K_L^0 K_S^0$	+1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$
	$D^0 \to K_L^0 K_L^0 K_L^0$	-1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$

Analysis of CP eigenstates (iv)

Amplitude to order λ^6 :

$$V_{cs}V_{us}^{*} = \lambda - \frac{\lambda^{3}}{2} - \left(\frac{1}{8} + \frac{A^{2}}{2}\right)\lambda^{5},$$

$$V_{cd}V_{ud}^{*} = -\lambda + \frac{\lambda^{3}}{2} + \frac{\lambda^{5}}{8} + \frac{A^{2}\lambda^{5}}{2}[1 - 2(\bar{\rho} + i\bar{\eta})]$$

$$V_{cb}V_{ub}^{*} = A^{2}\lambda^{5}(\bar{\rho} + i\bar{\eta}),$$

$$V_{cd}V_{cd}^{*} = \lambda^{2} - \lambda^{6}A^{2}[1 - 2\bar{\rho}],$$

$$V_{cs}V_{ud}^{*} = 1 - \lambda^{2} - \frac{A^{2}\lambda^{4}}{2} + A^{2}\lambda^{6}\left[\frac{1}{2} - \bar{\rho} - i\bar{\eta}\right]$$

$$V_{cd}V_{us}^{*} = -\lambda^{2} + \frac{A^{2}\lambda^{6}}{2}[1 - 2(\bar{\rho} + i\bar{\eta})].$$

 $V_{cb}V_{ub}^*$ large phase : $V_{ub} \rightarrow \gamma_c = \gamma$ $V_{cd}V_{ud}^*$ and $V_{cd}V_{us}^*$ small phase : $V_{cd} \rightarrow \beta_c$ $V_{cs}V_{ud}^*$ small phase entering at $O(\lambda^6)$

$D_0 \rightarrow K_+ K_-$

To first order one would expect to measure an asymmetry consistent with zero:

- → cross check of detector reconstruction and calibration
- → ideal mode to use when searching for new physics (NP)

Penguin topologies are DCS loops while the Tree amplitude is CS

- → Penguin contribution could in principle be ignored, but..
- \rightarrow A complete theoretical analysis is necessary if one wants to extract the weak phase and disentangle the c \rightarrow s \rightarrow u penguin

$D^0 \to \pi^+ \pi^-$

(ii)

hep-ph/9909479
On the Other Five Unitarity Triangles

I. I. Bigi ^a, A. I. Sanda ^b

^aPhysics Dept., Univ. of Notre Dame du Lac, Notre Dame, IN 46556, U.S.A.
^b Physics Dept., Nagoya University, Nagoya 464-01, Japan

There are two Isospin amplitude contributing to the process $D^0 \to \pi^+ \pi^-$ and the situation is almost the same with respect to the process where $B^0 \to \pi \pi$.

$$\begin{split} A\left(\Delta\,t\right) &= \frac{\overline{\Gamma}\left(\Delta\,t\right) - \Gamma\left(\Delta\,t\right)}{\overline{\Gamma}\left(\Delta\,t\right) + \Gamma\left(\Delta\,t\right)} = 2\,e^{\Delta\Gamma\,t/2} \frac{(|\lambda_f|^2 - 1)\cos\Delta\,M\,\Delta\,t + 2\,\Im\left(\lambda_f\right)\sin\Delta\,M\,\Delta\,t}{(1 + |\lambda_f|^2)(1 + e^{\Delta\Gamma\,\Delta\,t}) + 2\,\Re\left(\lambda_f\right)(1 - e^{\Delta\Gamma\,\Delta\,t})} \\ when \quad \Delta\,\Gamma = 0 \rightarrow A\left(\Delta\,t\right) = -\,C\cos\Delta\,M\,\Delta\,t + S\sin\Delta\,M\,\Delta\,t \end{split}$$

The difference between the process $D^0 \to \pi^+ \pi^-$ and the process where $B^0 \to \pi \pi$ is that $\Delta \Gamma \neq 0$. The effect is that instead of measuring S and C, one measure directly the real and imaginary part of λ_f :

$$\lambda_f = \frac{q}{p} \frac{\overline{A}}{A}$$

If one wants relate precisely the weak phase to the observed CP asymmetry, to constrain the penguin pollution it becomes necessary to measure $D^0 \to \pi^+ \pi^-, D^+ \to \pi^+ \pi^0, D^0 \to \pi^0 \pi^0$ This will require an e⁺e⁻ environment 16

Similar situation as in $D^0 \to \pi^+ \pi^-$

Simulated performance of TDCPV at ψ(3770)

- $\Psi(3770)$ channel: $D_{tag} \rightarrow K^- e^+ v_e$ $D^0 \rightarrow \pi^+ \pi^-$
- SuperB3 months at $3770: 500 \text{ fb}^{-1}$
- Estimated yelds from $CLEO_c$ results: $158000 D^0 \rightarrow \pi^+\pi^-$
- \bigcirc Adding $D_{tag} \rightarrow K^* e^+ v_e$ double the statistics
- More tagging modes
 plus 6 months run at the
 Ψ (3770) means 6 times
 larger data sample

$Im(\lambda)$ vs. $Re(\lambda)$

160000 $D^0 \rightarrow \pi^+ \pi^-$ equivalent to 0.5 ab⁻¹ We run 50000 pseudo-experiments We expect:

$$\Re(\lambda_f) = 0.985$$

$$\Im(\lambda_f) = 0.174$$

Imaginary part of λ vs Φ: CP-violation

As already seen, the value of λ is strictly dependent on the value of the phase Φ . The red dots show that a longer run or more tagging modes at $\Psi(3770)$ would provide an higher precision (smaller error) for this measurement.

•The precision does NOT depend on the value of the phase Φ.

Uncorrelated D⁰ mesons

$$A(t) = \frac{\overline{\Gamma}(t) - \Gamma(t)}{\overline{\Gamma}(t) + \Gamma(t)} = 2e^{\Delta \Gamma t/2} \frac{(|\lambda_f|^2 - 1)\cos \Delta M t + 2\Im(\lambda_f)\sin \Delta M t}{(1 + |\lambda_f|^2)(1 + e^{\Delta \Gamma t}) + 2\Re(\lambda_f)(1 - e^{\Delta \Gamma t})}$$

Mistag probability and dilution become important

$$A^{Phys}(t) = \frac{\overline{\Gamma^{Phys}}(t) - \Gamma^{Phys}(t)}{\overline{\Gamma^{Phys}}(t) + \Gamma^{Phys}(t)} = + \Delta \omega + \frac{(D - \Delta \omega)e^{\Delta \Gamma t/2}(\left|\lambda_f\right|^2 - 1)\cos \Delta M t + 2\Im\left(\lambda_f\right)\sin \Delta M t}{(1 + \left|\lambda_f\right|^2)h_+/2 + h_-\Re\left(\lambda_f\right)}$$

The flavour tagging is accomplished by identifying a "slow" pion in the

processes (CP and CP conjugated): $\frac{D^{*+} \rightarrow D^0 \pi^+}{D^{*-} \rightarrow D^0 \pi^-}$

$$D^{*+} \rightarrow D^0 \pi^+$$
 $D^{*-} \rightarrow \overline{D^0} \pi^-$

SuperB at Y(4S) and LHCb

D* from $e^+e^- \rightarrow c \overline{c}$ can be separated from those coming from B's by applying a momentum cut. Clean environment.

More easier to separate prompt D* from B cascade than LHCb

D* mesons are secondary particles produced in the primary decay of a B meson.

High background level to keep under control.

Trigger efficiency.

Uncorrelated mesons: SuperB vs. LHCb

Constraint on the cu triangle

It is possible to constrain the apex of the *cu* triangle in two ways:

- 1) by constraining two internal angles
- 2) by measuring the sides

Normalizing the baseline to 1, so dividing by $V_{us}^{*}V_{cs}$

 $\gamma_c = (68.4 \pm 0.1)^\circ$ from CKM prediction + any measurement of $\beta_c \rightarrow$ constraint on the apex of the triangle

$$X + iY = 1 + \frac{A^2 \lambda^5 (\bar{\rho} + i \bar{\eta})}{\lambda - \lambda^3 / 2 - \lambda^5 (1/8 + A^2 / 2)}$$

Using existing constraints on Wolfenstein parameters, we find:

$$X = 1.00025$$

 $Y = 0.00062$

Conclusions

We are exploring time-dependent CP asymmetries in charm and we defined a measurement for the β_c angle in the charm UT.

After defining the tagging for charm, we have studied a number of possible final states.

Using the developed formalism we simulated pseudo-experiments assuming SuperB luminosity and we have shown that a possible measurement for TDCP asymmetries will be reasonable.

We simulated pseudo-experiments and applied the formalism for uncorrelated mesons for both SuperB and LHCb and we compared the obtained results. We highlight that a precision measurement of any time-dependent effect will require a detailed understanding of the background.

We define a test of the standard model by constraining the apex of the cutriangle

A larger run at charm threshold would provide a more precise measurement of β

Conclusions: pictures

$$A^{Phys}(\Delta\,t) = \frac{\overline{\Gamma^{Phys}}(\Delta\,t) - \Gamma^{Phys}(\Delta\,t)}{\overline{\Gamma^{Phys}}(\Delta\,t) + \Gamma^{Phys}(\Delta\,t)} = -\Delta\,\omega + \frac{(D + \Delta\,\omega)\,e^{\Delta\,\Gamma|\Delta\,t|/2}(|\lambda_f|^2 - 1)\cos\Delta\,M\,\Delta\,t + 2\,\Im\,(\lambda_f)\sin\Delta\,M\,\Delta\,t}{(1 + |\lambda_f|^2)h_+/2 + h_-\,\Re\,(\lambda_f)}$$

B_d mesons

All the time-dependent CP asymmetry measurements made on the assumption that $\Delta\Gamma=0$. What if $\Delta\Gamma\neq0$?

$$A(\Delta t) = \frac{\overline{\Gamma}(\Delta t) - \Gamma(\Delta t)}{\overline{\Gamma}(\Delta t) + \Gamma(\Delta t)} = 2e^{\Delta \Gamma t/2} \frac{(|\lambda_f|^2 - 1)\cos\Delta M \Delta t + 2\Im(\lambda_f)\sin\Delta M \Delta t}{(1 + |\lambda_f|^2)(1 + e^{\Delta \Gamma \Delta t}) + 2\Re(\lambda_f)(1 - e^{\Delta \Gamma \Delta t})}$$

when $\Delta \Gamma = 0 \rightarrow A(\Delta t) = -C \cos \Delta M \Delta t + S \sin \Delta M \Delta t$

Example distributions: B⁰

$$\tau$$
 = 1.525x10⁻¹² s
 Γ =1/ τ =0.656x10¹² /s
 Δ m = 0.507x10¹² /s

$$\Delta\Gamma <= 6.56 \times 10^9 /s$$

($\Delta\Gamma/\Gamma = 0.01 [\pm 0.037]$)

 $\Delta t (ps)$

Back up slide 2

B_d mesons (ii)

Example distributions: B⁰

 $\tau = 1.525 \times 10^{-12} \text{ s}$ $\Gamma = 1/\tau = 0.656 \times 10^{12} \text{/s}$ $\Delta m = 0.507 \times 10^{12} \text{/s}$ $\Delta \Gamma <= 6.56 \times 10^{9} \text{/s}$ ($\Delta \Gamma / \Gamma = 0.01 \text{ [±0.037]}$)

Without better experimental determination, current measurements are at the level where we should be taking into account a possible non-zero $\Delta\Gamma/\Gamma$.

An extreme case: $\Delta\Gamma/\Gamma = 0.50$

Positive $\Delta\Gamma/\Gamma$ leads to an enhancement of the amplitude, a negative $\Delta\Gamma/\Gamma$ leads to a decrease.

Dashed line is $\Delta\Gamma=0$.

B_s mesons

Oscillation in Bs decays are extremely fast: SuperB will not be able to perform a time-dependent CP asymmetry analysis

With a large sample of events at Y(5S) the distribution of events as function of Δt would contain information on $Im(\lambda)$ and $Re(\lambda)$

- → informations on CPV related to TD measurements from hadron collider
- \rightarrow particularly relevant for final states including neutral particles, such as $B_s^0 \to \eta' \Phi$, challenging measurement at hadron collider

$$B_s \rightarrow \rho K_S^{0,} D_s^{+(-)} K^{-(+)}; B_s \rightarrow D \Phi$$
 SuperB can properties for

LHCb can do these measurements well, $B_s \rightarrow \rho \ K_S^{0,} \ D_s^{+(-)} K^{-(+)}; \ B_s \rightarrow D \Phi \blacktriangleleft$ SuperB can probably measure asymmetries for $\Delta t < 0$ vs. $\Delta t > 0$

 $B_c \to \pi^0 \, K_s^0$ The presence of the neutral pion and lack of informations to constrain the primary vertex: excellent candidate for SuperB

Thank you for your attention... ...and...

