
Bruno: an introduction for beginners

A. Di Simone
INFN Tor Vergata

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

2

OutlineOutline
● Introduction

● Geometry

● User interface

● Physics lists

● Physics recipes

● Particle generator

● ROOT input

● Hits/Digits

● MCTruth

● Detector boundaries

● Staged simulation

● Detector Survey

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

3

IntroductionIntroduction
● Bruno is presently the main full simulation tool used in SuperB

● In parallel to a few standalone simulation programs for very specific use cases

● The result of a few years of frenetic activity, when main focus was to
provide

● As much information as possible

● As reliable information as possible

● As fast as possible

● Using as few human resources as possible

● Result is a code with a lot of functionality, but whose general design
may be probably optimized

● Let us know if you are willing to help!

● One thing we did pretty well, however, was documenting the code:

● A quite detailed wiki is available
– http://mailman.fe.infn.it/superbwiki/index.php/Geant4_SuperB_simulation_main_portal

● Please refer to that page for all the gory details

● Will give here just an overview of the main functionality

http://mailman.fe.infn.it/superbwiki/index.php/Geant4_SuperB_simulation_main_portal

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

4

Geometry handlingGeometry handling
● The geometrical description of the SuperB detector is presently

defined using GDML

● Geometry Description Markup Language

● Application-indepedent geometry description format based on XML

● Provides text-based, human-readable definition of volumes

● Easy to modify without need of coding/compiling

● Being G4-independent, it allows interchange between different
applications (i.e. G4-ROOT)

● Easily modularizable:

● One xml file defining subdetector envelopes

● One file for each subdetector, specifying the detailed geometry to plug inside
the envelope

● Choice of “top” gdml file to use for geometry is done via the
command line

● ./Bruno -g SuperB.gdml

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

5

User interfaceUser interface
● We are presently using the “classical” G4 user interface

● i.e. macro files

● We are well aware of its limitations

● Finding alternatives have been on our to-do lists for
quite some time
● Some of them, like python, have actually been prototyped,

but never turned into a production code.

● If you are willing to help, let us know
● In the meantime, please be patient a use .mac files...

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

6

Physics listsPhysics lists
● A Physics List is the definition of the physics processes to be

simulated for each particle

● User can choose from the command line between some
predefined physics lists
● QGSP

● QGSP_BERT (better for hadronic showers, but slower)

● QGSP_EMV (worse msc treatment than QGSP, but faster)

● As long as CPU time is not an issue, QGSP_BERT is
probably the best choice
● If you are not interested in hadronic showers, you may gain some

time by using QGSP

● ./Bruno -g SuperB.gdml -p QGSP

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

7

Physics recipesPhysics recipes
● Use case presented by DCH at last meeting

● Switch on/off individual physics processes on a per-volume
basis

● Similar functionality is now implemented in Bruno, by
means of “Physics Recipes”
● Allow to tune the physics list with needed granularity
● Caveat: this is potentially very dangerous. Do not use it

unless you know what you are doing
– you may severely harm the reliablity of the simulation

● Granularity is defined by Regions, not by Volumes
● Makes more sense, since all physics-related quantities

(such as production cuts) are related to the regions

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

8

Physics recipesPhysics recipes
● In order to switch off or on a process, just create a region and

associate a recipe to it:
/regions/create_region DIRCRegion DircWorld

/regions/physicsRecipe DIRCRegion myBadProcess remove

/regions/physicsRecipe DIRCRegion myNiceProcess add

● Every time a particle enters the DIRCRegion, myBadProcesses is
suspended and myNiceProcess activated

● When the particle exits the region, the changes are undone, and
the ones corresponding to the next region are applied (if any)

● This kind of manipulation requires that both processes are already
present in the physics list.

● Always keep in mind that by adding or removing with this procedure you
are actually just suspending or resuming the processes.

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

9

Optical photonsOptical photons
● Optical processes deal with special particles called

"opticalphoton"
● think of them as photons in the optical range

● it is important to keep in mind that they are not just
"gammas" with lower energies

● no matter how much you lower the energy of a "gamma" it
will never become an "opticalphoton".

● The present implementation of Bruno masks all optical
simulation behind a command line flag ("-O", capital o,
not zero).

./bin/Linux-g++/Bruno -O myOpProp.mac -m singleparticle.mac

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

10

Particle generatorParticle generator
● A generator for background (RadBhabha)

events is embedded in the full simulation

● In addition, the option to shoot single particles
is available
● Easy, fast check of simulation
● May help detector experts in specific studies

● Example macro (singleparticle.mac) is
provided:
● ./Bruno.py -g SuperB.gdml -p QGSP -m

singleparticle.mac

● Look at the wiki for detailed documentation

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

11

ROOT inputROOT input
● Simulation input can be presently one of the following

● Single particle: run in the same simulation job

● Beam Strahlung events: run in the same simulation job

● Ascii file: allows to use results from an external event generator (to
be run beforehand as a different process)

● Now external generators can also use a ROOT file for data
interchange

● A plain TClonesArray of TParticle, stored as branch in a tree

● BrunoROOTGenerator implemented and tested

● Configurable at runtime via macro file

/generator/ROOT/file /path/to/my/file.root
/generator/ROOT/tree NameOfTheTree
/generator/ROOT/branch NameOfTheBranch

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

12

Hits/digitsHits/digits
● Presently, hits are created for all subdetectors, and stored in a

root file for further analysis

● Writing the code for creating the digits requires detailed
knowledge of the detector readout
● It should be done by detector experts

● We are providing a general infrastructure where detector-
specific code can be plugged in
● An example digitizer is provided to help developers

● In principle, all digitization code should be G4-independent

● This would allow to call digitization algorithms also without
running the full G4 simulation, i.e. digitizing already existing hit
files rather than newly created hits
● For technical reasons this is not happening yet

● However, this is a policy we would like to enforce

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

13

MCTruthMCTruth
● Hits (digits) take into account detector response

● They are the input for reconstruction

● Their representation in memory could in principle be identical
to the one used for real data

● Of course, when running simulation, you know many
more things
● Particle type, name of the process which originated it, exact

position of the vertex where it was created, etc.

● A HUGE amount of information, which needs to be somehow
selected and stored on disk

– Could include it in hits. Bad for many reasons. For example: you can
have many hits from the same true particle and don't want to
replicate info. Or, you can have a true particle not giving any hit and
still want to record it

– Better to use a separate class

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

14

MCTruthMCTruth
● Some very basic MCTruth recording is implemented

● Presently, one can save the status of any secondary
particle at its creation

● Configuration is specified at runtime via a dedicated
ascii file
● Each line represents a policy

● Main parameter in a policy is the volume name:
● The policy will affect only secondaries created in that

volume (and its daughter volumes)
● One can declare multiple policies for each volume

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

15

Detector boundariesDetector boundaries
● The aim is to save a snapshot of particles exiting/entering a

given volume (a subdetector)
● Approach similar to the one used for MCTruth

● Configuration done in a separate ascii file, but with less
parameters:

– SaveAllTracks
– IgnoreAllTracks
– trackPDG

● A set of policies for the main subdetectors is provided as
default

● A very convenient way to have some “hit”-like information
● Boundaries can be added to any volume, without writing any line of

code

● All is configured in .mac files at runtime

● The desired information is automatically written in the output file

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

16

Truth PersistencyTruth Persistency
● Once the MCTruth/Boundary information is

extracted from G4, one needs to write it to file
● Presently, we are persistifying to ROOT file the

following quantities
– Trajectories (as chosen by some MCTruth policy)
– MCTruth
– Snapshots at volume boundaries

● In all cases, persistent objects are are plain
ROOT objects (like Tparticle)
● You can read them without Bruno

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

17

Staged simulationStaged simulation
● When combining the ROOTGenerator together with the detector

boundaries, one gets for free the possibility to perform a staged
simulation

● Simulate only up to a given point of the detector, e.g. the calorimeter

● In a second phase (i.e. a different simulation job), use boundary
information and ROOTGenerator to resume the simulation job from
where it was interrupted, e.g. completing simulation in the IFR

● This may result in huge savings of cpu time, in particular when
testing different detector geometries

● Also, allows to quickly react to urgent requests:

● e.g: SVT needs an urgent production.

● We can simulate events only up to (excluding) the DCH

● If one day DCH is interested in the same events, can resume simulation
from where it was interrupted and add its own piece of code

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

18

Detector SurveyDetector Survey
● Idea is to obtain eta/phi maps of relevant quantities

concerning material distribution inside the detector
● These can be easily calculated using geantinos as

geometrical probe

● Shoot one geantino in a given direction
● Record, step by step, the amount of material through

which it is passing
– Can be radiation length, nuclear interaction length

● Fill 2D profiles

● One can choose to segment the material budget into
several parts (i.e. subdetectors)

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

19

BrnDetSurveyBrnDetSurvey
● A dedicated user action has been written to perform this

kind of studies

● When activated, it will create a separate root file
(DetSurvey.root) containing two folders (radLength and
intLength), each one with 2D profiles for each subdetector
● Note that it doesn't make any sense to activate this action when

not using geantinos

● In this case it's harmless, but its results have no physical
meaning at all

● Configurability is still missing: one has to modify the code
and recompile if behavior different from default is needed

● To be addressed (hopefully) in the near future, in the
context of a global approach to the configurability of SuperB
simulation

20
11

05
30

E
lb

a
A

n
d

re
a

D
i

S
im

o
n

e
-

U
n

iv
.

&
 I

N
F

N
 T

o
r

V
er

g
at

a

20

Example resultsExample results

a.
u.

a.
u.

SVT rad. Length vs eta

EMCA rad. Length vs eta

Of course plots are preliminary and unvalidated: axis units
hidden on purpose

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20

