#### Correlated D decays at the $\Psi(3770)$

Richard Gass and Michael D. Sokoloff Physics Department, University of Cincinnati May 30, 2011

We want to calculate the correlated amplitude for the D and the  $\overline{D}$  to decay to the states  $\alpha$  and  $\beta$  at times  $t_1$  and  $t_2$  respectively, where the times are measured in the center-of-mass (CM) system and t = 0 is the time of the  $e^+e^- \rightarrow c\overline{c}$ production. Because the  $\Psi(3770)$  is  $J^{PC} = 1^{--}$  state, we antisymmetrize the amplitude with respect to charge conjugation.

$$\mathcal{M} = \frac{1}{\sqrt{2}} \left[ \langle \alpha | \mathcal{H} | D^0(t_1) \rangle \langle \beta | \mathcal{H} | \overline{D}^0(t_2) \rangle - \langle \beta | \mathcal{H} | D^0(t_2) \rangle \langle \alpha | \mathcal{H} | \overline{D}^0(t_1) \rangle \right]$$
(1)

The time evolution of the  $D^0 - \overline{D}^0$  system is described by the Schrödinger equation

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix} = \left( \mathbf{M} - \frac{i}{2} \Gamma \right) \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix},$$
(2)

where the M and  $\Gamma$  matrices are Hermitian, and CPT invariance requires  $M_{11} = M_{22} \equiv M$  and  $\Gamma_{11} = \Gamma_{22} \equiv \Gamma$ .

The two eigenstates  $D_1$  and  $D_2$  of the effective Hamiltonian are

$$D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle, \quad |p|^2 + |q|^2 = 1.$$
 (3)

The corresponding eigenvalues are

$$\lambda_{1,2} \equiv m_{1,2} - \frac{i}{2} \Gamma_{1,2} = \left( M - \frac{i}{2} \Gamma \right) \pm \frac{q}{p} \left( M_{12} - \frac{i}{2} \Gamma_{12} \right), \tag{4}$$

where  $m_{1,2}$ ,  $\Gamma_{1,2}$  are the masses and decay widths and

$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}} \quad \left( \to \approx \sqrt{\frac{M_{12}^*}{M_{12}}} \text{ for } B_d \right).$$
(5)

The proper time evolution of the eigenstates of Eq. 2 is

$$|D_{1,2}(t)\rangle = e_{1,2}(t)|D_{1,2}\rangle, \ e_{1,2}(t) = e^{[-i(m_{1,2} - \frac{i\Gamma_{1,2}}{2})t]}.$$
 (6)

A state that is prepared as a flavor eigenstate  $|D^0\rangle$  or  $|\overline{D}{}^0\rangle$  at t=0 will evolve according to

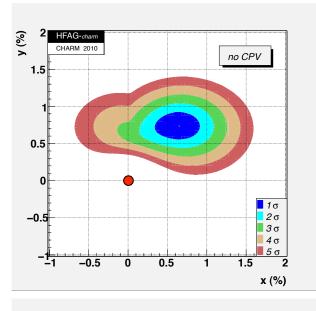
$$|D^{0}(t)\rangle = \frac{1}{2p} \Big[ p(e_{1}(t) + e_{2}(t)) |D^{0}\rangle + q(e_{1}(t) - e_{2}(t)) |\overline{D}^{0}\rangle \Big]$$
(7)

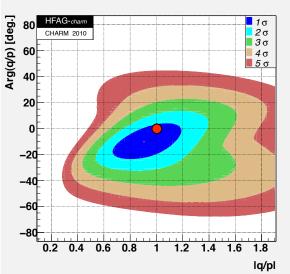
$$|\overline{D}^{0}(t)\rangle = \frac{1}{2q} \Big[ p(e_{1}(t) - e_{2}(t)) |D^{0}\rangle + q(e_{1}(t) + e_{2}(t)) |\overline{D}^{0}\rangle \Big] .$$
(8)

We adopt a version of the standard notation

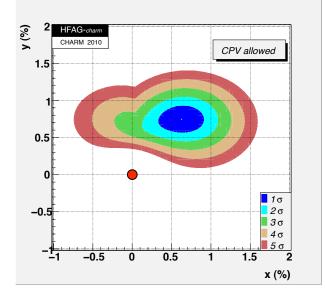
$$\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}, \quad x = \frac{m_1 - m_2}{\Gamma}, \quad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}.$$
 (9)

# HFAG Summary from October, 2010









# Fit to all time-dependent CPV measurements.

CPV-allowed plot, no mixing (x,y) = (0,0) point:  $\Delta \chi^2 = 109.6$ , CL = 1.56 x 10<sup>-24</sup>, no mixing excluded at 10.2 $\sigma$ 

No CPV (|q/p|,  $\phi$ ) = (1,0) point:  $\Delta \chi 2 = 1.218$ , CL = 0.456, consistent with CP conservation

Michael D. Sokoloff

# Forms of $\mathcal{M}$ and $|\mathcal{M}|^2$

After a bit of algebra we can write the matrix element as

$$2\sqrt{2}\mathcal{M} = \left(\frac{q}{p}\overline{\mathcal{A}}_{\alpha}\overline{\mathcal{A}}_{\beta} - \frac{p}{q}\mathcal{A}_{\alpha}\mathcal{A}_{\beta}\right) \left[e_{1}(t_{1})e_{2}(t_{2}) - e_{1}(t_{2})e_{2}(t_{1})\right] + \left(\mathcal{A}_{\alpha}\overline{\mathcal{A}}_{\beta} - \overline{\mathcal{A}}_{\alpha}\mathcal{A}_{\beta}\right) \left[e_{1}(t_{1})e_{2}(t_{2}) + e_{1}(t_{2})e_{2}(t_{1})\right]$$
(10)

which has the form

$$2\sqrt{2}\mathcal{M} = X(e_{11}e_{22} - e_{12}e_{21}) + Y(e_{11}e_{22} + e_{12}e_{21}).$$
(11)

From this one calculates

$$8|\mathcal{M}|^{2} = e^{-\Gamma(t_{1}+t_{2})} \times \{ XX^{*} (\cosh y\Gamma\Delta t - \cos x\Gamma\Delta t)$$

$$- 2\Re(XY^{*}) \sinh y\Gamma\Delta t + 2\Im(XY^{*}) \sin x\Gamma\Delta t$$

$$+ YY^{*} (\cosh y\Gamma\Delta t + \cos x\Gamma\Delta t \}$$
(12)

For  $x\Gamma\Delta t$ ,  $y\Gamma\Delta t \ll 1$  this can be approximated by

$$4|\mathcal{M}|^{2} = e^{-\Gamma(t_{1}+t_{2})} \times \left\{ XX^{*} \left[ \frac{(x^{2}+y^{2})}{4} (\Gamma\Delta t)^{2} \right] - \Re(XY^{*}) y\Gamma\Delta t + \Im(XY^{*}) x\Gamma\Delta t + YY^{*} \left[ 1 + \frac{(y^{2}-x^{2})}{4} (\Gamma\Delta t)^{2} \right] \right\}$$
(13)

- Y is the unmixed amplitude
- X is the mixing amplitude
- $XY^*$  controls the interference terms in the mixing rate

# **Some General Observations**

- Each of X and Y is the difference of two products of amplitudes; the difference reflects the charge conjugation symmetry of the initial  $D^0\overline{D}^0$  state.
- The components of the decay rate proportional to the real and imaginary parts of  $XY^*$  corresponds to the interference of the direct and mixing amplitudes to a common final state.
- The relative time-dependence dependence of the interference term is proportional to  $y' \Gamma \Delta t$  where  $y' = y \cos \delta + x \sin \delta$  with  $XY^* = Ce^{i\delta}$  (C and  $\delta$  real).
- The phase  $\delta$  depends upon the phase of p/q and also on both the final state  $\alpha$  and the final state  $\beta$ .
- The interference term is odd in  $\Gamma \Delta t$  while the pure mixing and unmixed terms are even in  $\Gamma \Delta t$ . Thus, the interference term disappears when considering only time-integrated decay rates.

We make some back-of-the envelope calculations of sensitivity to mixing and CP violation making a number of assumptions. The numbers must be refined to be considered more than rough estimates. However, they can guide thinking about which channels warrant detailed study. We will assume that

- we can scale from CLEO-c's 281 fb<sup>-1</sup> sample to a Super*B* sample using a factor of 1500. This corresponds about 500 fb<sup>-1</sup> of data with a somewhat lower efficiency for tighter cuts related to vertex resolution.
- we measure time-dependent asymmetries for  $|\Delta t| > 2\tau_{D^0}$  perfectly and we have no sensitivity to asymmetries for lower values of  $|\Delta t|$ .
- we sometimes estimate the fraction of events with  $|\Delta t| > 2\tau_{D^0}$  to be  $1/e^2$  and the average value of  $|\Gamma \Delta t|$  for these events to be 3.

#### CP even versus CP even

For two *CP*-even eigenstates  $\alpha$  and  $\beta$ ,

$$Y = 0$$
(14)  
$$X = \left(\frac{q}{p} - \frac{p}{q}\right) \mathcal{A}_{\alpha} \mathcal{A}_{\beta}.$$

so the rate is

$$|\mathcal{M}|^{2} = e^{-\Gamma(t_{1}+t_{2})} \times \left|\frac{q}{p} - \frac{p}{q}\right|^{2} |A_{\alpha}|^{2} |A_{\beta}|^{2} \left(\frac{x^{2}+y^{2}}{4}\right) (\Gamma \Delta t)^{2}.$$
(15)

In the limit that CP is a good symmetry, this rate goes to zero. To estimate what might be possible at Super*B*, we take the numbers of  $K^{\mp}\pi^{\pm}$  versus CPeven events observed by CLEO-c (605), scale by the approximate ratio of  $K^-K^+$ plus  $\pi^-\pi^+$  events observed ( $\approx 0.13$ ) [to account for the value of  $|A_{\alpha}|^2 |A_{\beta}|$ ], and scale by the nominal relative luminosity. This procedure gives approximately 120K as the coefficient of  $(x^2 + y^2) (\Gamma \Delta t)^2/4$ . Using  $(x^2 + y^2) (\Gamma \Delta t)^2/2$  as an estimate of the time integral, and taking  $x^2 + y^2 = 10^{-4}$ , the integrated signal will be about

$$\left|\frac{q}{p} - \frac{p}{q}\right|^2 \times 6 \text{ events.}$$
(16)

# $K^-\pi^+$ versus $K^-\pi$

A similar result obtains for common final states such as  $K^-\pi^+$ . If  $\alpha = \beta$  then  $\mathcal{A}_{\beta} = \mathcal{A}_{\alpha}$  and  $\overline{\mathcal{A}}_{\beta} = \overline{\mathcal{A}}_{\alpha}$ . Again, the unmixed amplitude goes to zero. However, the pure mixing term does not require *CP* violation to be non-zero.

$$Y = 0$$

$$X = \left(\frac{q}{p} \overline{\mathcal{A}}_{\alpha} \overline{\mathcal{A}}_{\alpha} - \frac{p}{q} \mathcal{A}_{\alpha} \mathcal{A}_{\alpha}\right).$$
(17)

In this case,  $\mathcal{A}_{\alpha}$  corresponds to the Cabibbo-favored amplitude and  $\overline{\mathcal{A}}_{\alpha}$  to the doubly Cabibbo-suppressed amplitude. With  $\overline{\mathcal{A}}_{\alpha} = ke^{i\delta}\mathcal{A}_{\alpha}$  the rate can be written

$$|\mathcal{M}|^{2} = e^{-\Gamma(t_{1}+t_{2})} \times \left|\frac{q}{p}k^{2}e^{i2\delta} - \frac{p}{q}\right|^{2} |A_{\alpha}|^{2} |A_{\alpha}|^{2} \left(\frac{x^{2}+y^{2}}{4}\right) (\Gamma\Delta t)^{2}.$$
(18)

As a first approximation, we can ignore both the doubly Cabibbo-suppressed amplitude and CP violation. In this case

$$|\mathcal{M}|^2 \approx e^{-\Gamma(t_1+t_2)} \times |A_{\alpha}|^2 |A_{\alpha}|^2 \left(\frac{x^2+y^2}{4}\right) (\Gamma \Delta t)^2.$$
<sup>(19)</sup>

CLEO-c observes 600  $K^-\pi^+$ ,  $K^+\pi^-$  events, which corresponds to  $2 |A_{\alpha}|^2 |A_{\alpha}|^2$ . Scaling by relative luminosities, and again using  $10^{-4}$  for  $(x^2 + y^2)$ , we can project a mixing signal of 23 events in this channel and a similar number in  $K^+\pi^$ versus  $K^+\pi^-$ . While differences nominally can be due to direct *CP* violation, indirect *CP* violation, or statistical fluctuation, given the existing HFAG bounds on direct and indirect *CP* violation, any variation we observe in this channel will be predominantly due to statistical fluctuations.

#### **Opposite-sign semileptonic final states**

For opposite-sign semileptonic decays we can choose  $\alpha = K^- \ell^+ \nu$  and  $\beta = K^+ \ell^- \overline{\nu}$  for which

$$Y = \mathcal{A}_{\alpha} \overline{\mathcal{A}}_{\beta}$$
(20)  
$$X = 0$$

The rate is proportional to

$$|\mathcal{M}|^{2} = e^{-\Gamma(t_{1}+t_{2})} \times |\mathcal{A}_{\alpha}|^{2} |\mathcal{A}_{\beta}|^{2} \left[1 + \frac{(y^{2}-x^{2})}{4} (\Gamma \Delta t)^{2}\right].$$
(21)

CLEO-c has not reported a signal in the corresponding opposite-sign dilepton channel, but we can optimistically estimate that the rate will be similar to that for  $(K^-\pi^+)$  versus  $K^+\pi^-$ . This allows us to estimate 900K  $K^-e^+\nu_e$  versus  $K^+e^-\overline{\nu}_e$  events.

The only signature of mixing in this final state is the quadratic departure from purely exponential decay which is proportional to  $(y^2 - x^2)$ . This is less than one part in 10<sup>4</sup>, significantly less than the rate of statistical fluctuations. This final state has no sensitivity to *CP* violation.

#### Same-sign semileptonic final states

For same-sign semileptonic decays we can choose  $\alpha = \beta = K^- \ell^+ \nu$ . In this case

$$Y = 0$$

$$X = -\frac{p}{q} \left( \mathcal{A}(D^0 \to K^- e^+ \overline{\nu}_e) \right) .$$
(22)

The corresponding rate is

$$|\mathcal{M}|^2 = e^{-i\Gamma(t_1+t_2)} \left| \left(\frac{p}{q}\right) \mathcal{A}_{\alpha} \mathcal{A}_{\beta} \right|^2 \left(\frac{x^2+y^2}{4}\right) (\Gamma \Delta t)^2.$$
(23)

Using the same assumptions as for the opposite-sign dilepton events, we again estimate 23 mixing events in each of  $K^-e^+\nu_e$  versus  $K^-e^+\nu_e$  and  $K^+e^-\overline{\nu}_e$  versus  $K^+e^-\overline{\nu}_e$ .

This is a bit optimistic as the branching fraction for  $Ke\nu$  is less than that for  $K\pi$ , and also because the efficiencies are likely to lower, the backgrounds higher, and the vertex resolutions worse.

#### Semileptonic versus a CP eigenstate - I

The correlated decays of  $D^0\overline{D}^0$  into a CP eigenstate and and semileptonic final state are also (relatively) easy to understand. Consider  $\mathcal{A}_{\alpha} = \mathcal{A}(D^0 \to K^- e^+ \nu_e)$  and  $\mathcal{A}_{\beta} = \mathcal{A}(D^0 \to K^- K^+)$  as an example such a final state. In this case

$$Y = \mathcal{A}_{\alpha} \mathcal{A}_{\beta}; \qquad X = -\frac{p}{q} \mathcal{A}_{\alpha} \mathcal{A}_{\beta}$$
(24)

The interference terms proptional to  $y \Gamma \Delta t$  and  $x \Gamma \Delta t$  in the decay rate, see Eqn. (13), are proportional to the real and imaginary parts of

$$XY^* = \left(-\frac{p}{q}\mathcal{A}_{\alpha}\mathcal{A}_{\beta}\right)\left(\mathcal{A}_{\alpha}^*\mathcal{A}_{\beta}^*\right) = -\frac{p}{q}|\mathcal{A}_{\alpha}|^2|\mathcal{A}_{\beta}|^2$$
(25)

which are directly proportional to the real and imaginary parts of p/q. There is no sensitivity to strong phase differences between decays of  $D^0$  and  $\overline{D}^0$  to the same final state in this case. If one replaces the CP even final state with a CPodd final state, the interference term changes sign

$$XY^* = \left(-\frac{p}{q}\mathcal{A}_{\alpha}\mathcal{A}_{\beta}\right)\left(-\mathcal{A}_{\alpha}^*\mathcal{A}_{\beta}^*\right) = +\frac{p}{q}|\mathcal{A}_{\alpha}|^2|\mathcal{A}_{\beta}|^2.$$
(26)

The (small  $y\Gamma\Delta t$ , small  $x\Gamma\Delta t$ ) limit for  $D^0 \to K^-\ell^+ X$  opposite CP eigenstates is

$$|\mathcal{M}|^{2} = e^{-\Gamma(t_{1}+t_{2})} |\mathcal{A}_{\alpha}|^{2} |\mathcal{A}_{\beta}|^{2} \times \qquad (27)$$
$$\left\{ 1 \mp \Re(\frac{p}{q}) y \Gamma \Delta t \pm \Im(\frac{p}{q}) x \Gamma \Delta t + \frac{y^{2}}{2} (\Gamma \Delta t)^{2} \right\}.$$

#### Semileptonic versus a CP eigenstate - II

For  $\overline{D}^0 \to K^+ \ell^- X$  detected in conjunction with a CP even final state, (-p/q) in  $XY^*$  becomes (+q/p) and  $\mathcal{A}_{\alpha} = \mathcal{A}(\overline{D}^0 \to K^+ \ell^- X)$ . As a first approximation, the difference between positive and negative decay time distributions will be proportional to

$$\left(\Re\left(\frac{p}{q}\right)y - \Im\left(\frac{p}{q}\right)x\right) \times \Gamma\left|\Delta t\right| = y'\Gamma\left|\Delta t\right|$$
(28)

for  $D^0 \to K^- \ell^+ X$  and to

$$\left(\Re(\frac{q}{p}) y - \Im(\frac{q}{p}) x\right) \times \Gamma |\Delta t| = y'' \Gamma |\Delta t|$$
(29)

for  $\overline{D}^0 \to K^+ \ell^- X$ . For each sign of  $Ke\nu$  we estimate  $1500 \times 150 = 225$ K reconstructed events based on CLEO-c's observed rates of  $Xe\nu$  versus  $K^-K^+$  and  $\pi^-\pi^+$ . Of these we estimate that  $1/e^2$  (30K) will be produced with  $|\Gamma \Delta t| > 2$ with  $\langle |\Gamma \Delta t| \rangle = 3$ . Assuming y' = 0.01, the  $y'^{(\prime)}\Gamma |\Delta t|$  term will create a surplus of 913 events for  $\Delta t < 0$  and a deficit of 913 events for  $\Delta t > 0$  out of  $\approx 60$ K events with  $\Gamma |\Delta t| > 2$  for an asymmetry of  $1827 \pm 247$  events.

#### Same-sign semileptonic versus hadronic - I

The correlated decays to a semileptonic final state and a hadronic non-CP eigenstate are somewhat more complicated. For the final state  $(K^-\pi^+, K^-e^+\nu_e)$  we can write

where  $a, \delta, \phi, k$  and  $\delta_{K\pi}$  are real numbers. Writing  $\mathcal{A}_{\alpha}$  in the form  $ae^{i(\delta+\phi)}$  will be useful when we consider final states including a  $K^+\pi^-$ . The factor  $k \approx \tan^2 \theta_C$ is the ratio of the magnitudes of the doubly Cabibbo-suppressed (DCS) and Cabibbo-favored (CF) amplitudes. The angle  $\delta_{K\pi}$  is the relative strong phase between the CF and DCS amplitudes to the same final state. The mixing and direct amplitudes for  $(K^-\pi^+, K^-e^+\nu_e)$  are

$$egin{array}{lll} X &=& -rac{p}{q} {\cal A}_{lpha {\cal A} eta} \ Y &=& k e^{i \delta_{k \pi}} {\cal A}_{lpha} {\cal A}_{eta} \end{array}$$

The mixing, interference, and direct terms in the decay rate are

$$egin{aligned} XX^* &= \left|rac{p}{q}
ight|^2 |\mathcal{A}_lpha|^2 |\mathcal{A}_eta|^2 \ XY^* &= rac{p}{q} e^{-i\delta_{K\pi}} k |\mathcal{A}_lpha|^2 |\mathcal{A}_eta|^2 \ YY^* &= k^2 |\mathcal{A}_lpha|^2 |\mathcal{A}_eta|^2 \end{aligned}$$

#### Same-sign semileptonic versus hadronic - II

The (small  $y\Gamma\Delta t$ , small  $x\Gamma\Delta t$ ) limit for the  $(K^-\ell^+X, K^-\pi^+)$  decay rate is

$$|\mathcal{M}|^{2} = \frac{1}{4} e^{-\Gamma(t_{1}+t_{2})} |\mathcal{A}_{\alpha}|^{2} |\mathcal{A}_{\beta}|^{2} \times \left\{ \left| \frac{p}{q} \right|^{2} \left( \frac{x^{2}+y^{2}}{4} \right) (\Gamma \Delta t)^{2} \right.$$

$$\left. - \left( \Re(\frac{p}{q}) \cos \delta_{K\pi} + \Im(\frac{p}{q}) \sin \delta_{K\pi} \right) k y \Gamma \Delta t \right.$$

$$\left. + \left( \Im(\frac{p}{q}) \cos \delta_{K\pi} - \Re(\frac{p}{q}) \sin \delta_{K\pi} \right) k x \Gamma \Delta t \right.$$

$$\left. + k^{2} \left[ 1 + \left( \frac{y^{2}-x^{2}}{4} \right) (\Gamma \Delta t)^{2} \right] \right\} .$$

$$(30)$$

To make a back-of-the envelope sensitivity estimate, we consider

- the limit p = q and  $\cos \delta_{K\pi} = 1$
- wth x = 0, y = 0.01 and  $k^2 = 0.003$ .

The rate now has the form

$$|\mathcal{M}|^2 \propto k^2 - ky(\Gamma \Delta t) + \frac{y^2(1+k^2)}{4}(\Gamma \Delta t)^2.$$
(31)

#### Same-sign semileptonic versus hadronic - III

For the  $(K^-\ell^+X, K^-\pi^+)$  with

- the limit p = q and  $\cos \delta_{K\pi} = 1$
- and assuming  $x = 0, y = 0.01, k^2 = 0.003$ .

the rate now has the form

$$|\mathcal{M}|^2 \propto k^2 - ky(\Gamma \Delta t) + \frac{y^2(1+k^2)}{4}(\Gamma \Delta t)^2, \qquad (32)$$

We have used Mathematica to compute the total rate and the rates for  $|\Gamma \Delta t| > 2$ in terms of the corresponding opposite-sign rate. As a good approximation,

- the total rate just the doubly-Cabibbo suppressed rate, 0.003,
- the integrated rate for  $\Gamma \Delta t < -2$  is  $\approx 3.3 \times 10^{-4}$ , and
- the integrated rate for  $\Gamma \Delta t > 2$  is  $\approx 1.1 \times 10^{-4}$ .

CLEO-c observes  $\approx 1175$  events in each of  $(X^+e^-\overline{\nu}_e, K^-\pi^+)$  and  $(X^-e^+\nu_e, K^+\pi^-)$ . In Super *B* we therefore expect

- $1.76 \times 10^6$  events for each opposite-sign combination,
- $\approx$  5300 events for each same-sign combination,
- 584 observed with  $\Gamma \Delta t < -2$  and 191 observed with  $\Gamma \Delta t > 2$
- for a summed asymmetry of  $800 \pm 40$  events.

#### CP eigenstates versus hadronic non-CP - I

The correlated decays to a CP eigenstate and a hadronic non-CP eigenstate are somewhat more complicated. Consider, as a first example, the final state  $(K^-\pi^+, K^-K^+)$ . We can write

The mixing and direct amplitudes for  $(K^-\pi^+, K^-K^+)$  are

$$egin{aligned} X &= \left(rac{q}{p}ke^{i\delta_{K\pi}}-rac{p}{q}
ight)\mathcal{A}_lpha\mathcal{A}_eta\ Y &= (1-ke^{i\delta_{K\pi}})\mathcal{A}_lpha\mathcal{A}_eta \end{aligned}$$

As is well-known, the time-integrated rate is dominated by the term

$$YY^* = (1 - 2k\cos\delta_{K\pi} + k^2)\mathcal{A}_{\alpha}\overline{\mathcal{A}}_{\alpha}^*\mathcal{A}_{\beta}\overline{\mathcal{A}}_{\beta}^*$$
(33)

which depends linearly on  $\cos \delta_{K\pi}$ . CLEO-c observes about 60 events in each sign of  $(K^{\mp}\pi^{\pm}, K^{-}K^{+})$ .

- assuming  $2k \cos_{\delta_{K_{\pi}}} \approx 2 \cdot \sqrt{0.003} \cdot 1$ ,
- the total signal is  $\approx 180$ K events  $\pm 425$ ,
- differs from the  $2k \cos_{\delta_{K\pi}} = 0$  value by  $\approx 20 \text{K} \pm 425$ ,
- indicates we can measure  $\cos \delta_{K\pi}$  with 2% precision.

#### CP eigenstates versus hadronic non-CP - II

The real and imaginary parts of the interference term are

$$\Re(XY^*) = k \left(1 + \left|\frac{q}{p}\right|^2\right) \left[\Re\left(\frac{p}{q}\right)\cos\delta - \Im\left(\frac{p}{q}\right)\sin\delta\right] - \Re\left(\frac{p}{q}\right)(1 + k^2) \quad (34)$$
$$\Im(XY^*) = k \left(1 - \left|\frac{q}{p}\right|^2\right) \left[\Im\left(\frac{p}{q}\right)\cos\delta + \Re\left(\frac{p}{q}\right)\sin\delta\right] - \Im\left(\frac{p}{q}\right)(1 + k^2)$$

Again, we estimate sensitivity to mixing

- in the limit p = q
- assuming we detect  $1/e^2$  of the events with  $|\Gamma \Delta t| > 2$  with average  $|\Gamma \Delta t| = 3$ ,
- assuming  $1 2k \cos \delta_{K\pi} = 0.89$  and y = 0.01.

We then expect to observe an asymmetry of  $650 \pm 156$  events.

### **Summary of Calculations to Date**

We have made rough estimates of Super B sensitivity to mixing assuming

- events rates scale from CLEO-c,
- Super *B* integrated  $\mathcal{L} = 500 \, \text{fb}^{-1}$ ,
- we can cleanly separate  $|\Gamma \Delta t| > 2$  from  $|\Gamma \Delta t| < 2$ ,
- $p/q \approx 1$ ,
- $y \approx 0.01$

| channel                                              | type of measurement | figure of merit                       |
|------------------------------------------------------|---------------------|---------------------------------------|
| $K^-K^+,\pi^-\pi^+\mathrm{v}K^-K^+,\pi^-\pi^+$       | integrated          | $ q/p - p/q ^2 	imes 6$ events        |
| $K^-\pi^+ ~\mathrm{v}~ K^-\pi^+ + \mathrm{cc}$       | integrated          | 46 events                             |
| $K^-e^+ u\mathrm{v}K^-e^+ u+\mathrm{cc}$             | integrated          | 46 events                             |
| $K^-e^+ u ~\mathrm{v}~K^-K^+,\pi^-\pi^++\mathrm{cc}$ | TDA                 | $1887 \pm 247$ events (~ $7\sigma$ )  |
| $K^-e^+ u \mathrm{v}K^-\pi^+,+\mathrm{cc}$           | TDA                 | $800\pm40~{ m events}~(\sim20\sigma)$ |
| $K^-\pi^+ ~{ m v}~ K^-K^+, ~\pi^-\pi^+ + { m cc}$    | integrated          | $\cos \delta_{K\pi} \sim \pm 2\%$     |
| $K^-\pi^+ ~{ m v}~ K^-K^+, ~\pi^-\pi^+ + { m cc}$    | TDA                 | $650 \pm 156$ events (~ $4\sigma$ )   |

Sensitivity to mixing (and CP violation) is greatest when the interference term is as large as possible compared to the direct correlated decay term. This requires "same-sign" decays with a DCS amplitude interfering with a CF amplitude.

# Future Directions - I

The channel studied with the greatest mixing/CP violation reach is

$$ullet$$
  $(K^-e^+
u_e,\,K^-\pi^+)+{
m cc}$ 

where the measurable time-dependent asymmetry is estimated to be  $20 \sigma$ . Other correlated final states whose rates will be dominated by one or more DCS amplitudes and will enjoy a relatively large interference terms include

$$ullet$$
  $K^-e^+
u_e,~K^-\pi^+\pi^0+{
m cc}$ 

• 
$$K^- e^+ 
u_e, \, K^- \pi^- \pi^+ \pi^+ + {
m cc}$$

• 
$$K^-\pi^+, \, K^-\pi^+\pi^0 + {
m cc}$$

$$\bullet \ K^-\pi^+, \ K^-\pi^-\pi^+\pi^+ + {
m cc}$$

• 
$$K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{-}\pi^{+}\pi^{+} + cc$$

"Same-sign" events in which both Ds are observed in the same hadronic final state, but at different points in phase space (the Dalitz plot, for three-body channels) may also manifest large time-dependent asymmetries, at least in parts of the phase space. If this is true, we may be able to exploit

• 
$$K^-\pi^+\pi^0, \ K^-\pi^+\pi^0 + {
m cc}$$

• 
$$K^{-}\pi^{-}\pi^{+}\pi^{+}, K^{-}\pi^{-}\pi^{+}\pi^{+} + \mathrm{cc}$$

will similar benefit.

# **Future Directions - II**

In traditional (single-tag) analyses, the final state  $K_S^0 \pi^- \pi^+$  has been especially useful for studying mixing as the interference of CF and DCS amplitudes produces time-dependent rate variations as a function of position in the Dalitz plot. Because there are intermediate amplitudes which are *CP* eigenstates, both x and y can be extracted without confusion due to strong phase differences between CF and DCS amplitudes. This suggests the possibility that the correlated final states

- $\bullet ~K^- e^+ 
  u_e,~K^0_S \pi^- \pi^+ + {
  m cc}$
- $\bullet \ K^-\pi^+, \ K^0_S\pi^-\pi^+ + {
  m cc}$
- $\bullet \ K^- \pi^+ \pi^0, \ K^0_S \pi^- \pi^+ + {
  m cc}$
- $K^-\pi^-\pi + \pi +, \ K^0_S\pi^-\pi^+ + {
  m cc}$
- $\bullet \ K^0_S \pi^- \pi^+, \ K^0_S \pi^- \pi^+ + {
  m cc}$

will be similarly useful.

# Conclusions

We have made rough estimates of Super B sensitivity to mixing assuming

- events rates scale from CLEO-c,
- Super *B* integrated  $\mathcal{L} = 500 \, \text{fb}^{-1}$ ,
- we can cleanly separate  $|\Gamma \Delta t| > 2$  from  $|\Gamma \Delta t| < 2$ ,
- $p/q \approx 1$ ,
- $y \approx 0.01$

It appears that

- Sensitivity to mixing (and *CP* violation) is greatest when the interference term is as large as possible compared to the direct correlated decay term. This requires "same-sign" decays with a DCS amplitude interfering with a CF amplitude.
- $K^-e^+
  u_e, \, K^-\pi^+ + {
  m cc}$  allows  $20\sigma$  measurement of mixing
- at least 5 other same-sign channels promise similar mixing sensitivity
- 2 additional channels with same sign decays to different points in phase space are probably similarly sensitive
- correlated final states with at least one  $K_S^0 \pi^- \pi^+$  may also be useful
- measuring time-dependent asymmetries down to  $|\Gamma \Delta t| = 1$ , can increase the effective statistics substantially.

Time-dependent measurements of asymmetries in correlated decays at the  $\Psi(3770)$  may allow mixing parameters to be determined with 1% - 2% precision.