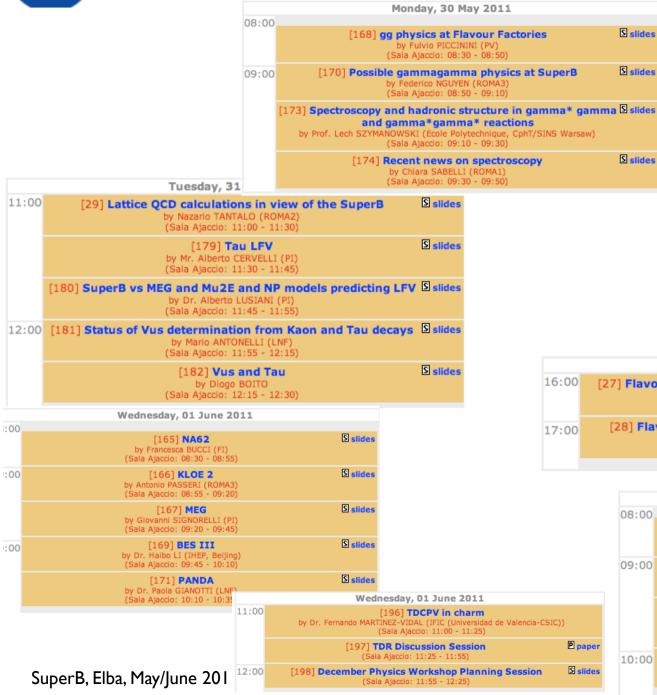


SuperB: Physics Summary

John Walsh INFN, Pisa

XVII SuperB Workshop and Kick Off Meeting La Biodola, May 28 - June 2, 2011



A very active and fruitful week

- We had eight separate physics parallel sessions
- Total of 26 presentations
 - of which perhaps 30-40% by our theorist friends
- Some highlights...
 - I apologize in advance for not showing something from each talk
 - Problem of quantity, not quality!

Lots of stuff...

Tuesday, 31 May 2011 08:00 S slides [184] K* mu mu at LHCb by Dr. WIII REECE (CERN) (Sala Bonaparte 2: 08:30 - 08:50) S slides [185] BaBar/SuperB exclusive and inclusive 09:00 by Prof. Gerald EIGEN (University of Bergen) (Sala Bonaparte 2: 08:50 - 09:10) S slides [186] SuperB sensitivity fitting studies by Dr. Kevin FLOOD (Calted (Sala Bonaparte 2: 09:10 - 09:30) Sildes [187] Exclusive and inclusive theory: low q2 region by Tobias HURTH (Johannes Gutenberg-University, Mainz) (Sala Bonaparte 2: 09:30 - 09:50) S slides [188] Exclusive high q2 region 10:00 by Dr. Christoph BOBETH (TU Munich (IAS/Excellence cluster universe)) (Sala Bonaparte 2: 09:50 - 10:10) [189] Discussion (Sala Bonaparte 2: 10:10 - 10:30)

Tuesday, 31 May 2011

08:00

[175] Searching for Dark Forces in Rare Decays
by matt GRAHAM
(Sala Ajacclo: 08:30 - 08:50)

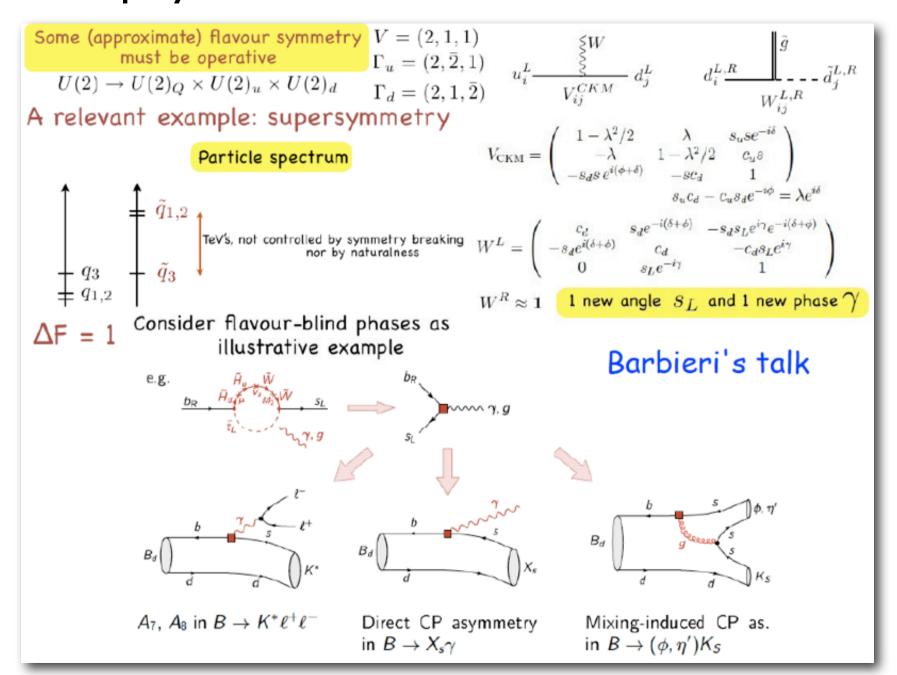
09:00

[176] Searching for Dark Forces in e+e- Interactions
by Bertrand ECHENARD (California Institute of Technology)
(Sala Ajacclo: 08:50 - 09:10)

[177] Dark Forces at SuperB
by Luca BARZè (PV)
(Sala Ajacclo: 09:10 - 09:30)

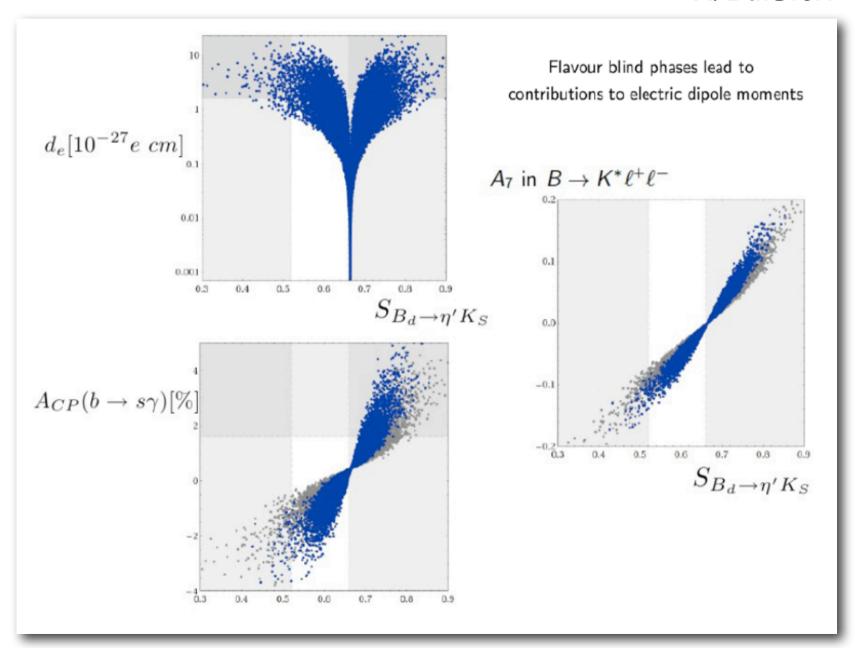
[178] Electroweak measurements
by Dr. Oscar VIVES (U. Valencia and IFIC)
(Sala Ajacclo: 09:30 - 09:50)

Sunday, 29 May 2011


6:00 [27] Flavour physics and flavour symmetries: an example
by Riccardo BARBIERI (PI)
(Sala Ajaccio: 16:00 - 16:45)

7:00 [28] Flavor Physics in an SO(10) Grand Unified Model
by Sebastian JAEGER (University of Sussex)
(Sala Ajaccio: 16:45 - 17:30)

	Monday, 30 May 2011	
08:00		
	[89] TDCPV at Charm Threshold, etc. by Mr. Gianluca INGUGLIA (Queen Mary University of London) (Sala Bonaparte 2: 08:30 - 09:00)	S slides
09:00	[90] Time-dependent Decay Correlations by Michael SOKOLOFF (University of Cincinnati) (Sala Bonaparte 2: 09:00 - 09:30)	S slides
	[91] Resolution Studies at Charm Threshold by Mr. Rolf ANDREASSEN (University of Cincinnati); Michael SOKOLOFF (University of Cincinnati) (Sala Bonaparte 2: 09:30 - 09:50)	S slides
10:00	[92] CPT and Other Topics for SuperB by Prof. Milind PUROHIT (Univ. of South Carolina) (Sala Bonaparte 2: 09:50 - 10:20)	S slides


Interplay session

Interplay session

R. Barbieri

Interplay session

[Chang, Masiero, Murayama 03]

Jäger's talk

SO(10) gauge theory with superpotential

$$W_Y = \frac{1}{2} 16_i \, \mathsf{Y}_1^{ij} \, 16_j \, 10_H \, + \, 16_i \, \mathsf{Y}_2^{ij} \, 16_j \, \frac{45_H \, 10_H'}{2 \, M_{\mathrm{Pl}}} \, + \, 16_i \, \mathsf{Y}_N^{ij} \, 16_j \, \frac{\overline{16}_H \, \overline{16}_H}{2 \, M_{\mathrm{Pl}}}$$
 SO(10) spinor $16_i = (Q, u^c) d^c, L, e^c, \nu^c)_i$, $i = 1, 2, 3$

CMM Model

"msugra

$$\mathbf{m}_{\widetilde{16}_i}^2 = m_0^2 \ \mathbb{1} \,, \qquad m_{10_H}^2 = m_{10_H'}^2 = m_{16_H}^2 = m_{\overline{16}_H}^2 = m_{45_H}^2 = m_0^2$$

$$A_1 = a_0 Y_1$$
, $A_2 = a_0 Y_2$, $A_N = a_0 Y_N$,

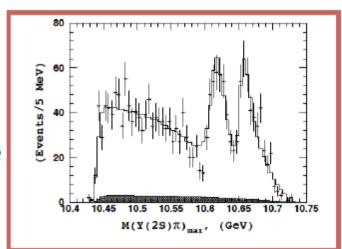
$$A_2 = a_0 Y_2$$

$$A_N = a_0 Y_N$$
,

	Observable/mode	H^{+}	MFV non-MFV	NP	Right-handed	LTH	SUSY					
		hìgh $\tan \beta$			Z penguins	currents		AC	RVV2	AKM	δLL	FBMSSM
,	$\tau \rightarrow \mu \gamma$ $\tau \rightarrow \ell \ell \ell$						***	***	***	*	***	***
	$B \rightarrow \tau \nu, \mu \nu$ $B \rightarrow K^{(*)+}\nu \overline{\nu}$ $S \text{ in } B \rightarrow K_S^0 \pi^0 \gamma$ S in other penguin modes $A_{CP}(B \rightarrow X_s \gamma)$ $BR(B \rightarrow X_s \ell \ell)$ $BR(B \rightarrow X_s \ell \ell)$ $B \rightarrow K^{(*)}\ell \ell \text{ (FB Asym)}$	***(CKM)	***	* ***(CKM) *** *	***	*** *** ** *		* ***	**	* * *	* ***	
,	$B_s \rightarrow \mu\mu$ $\beta_s \text{ from } B_s \rightarrow J/\psi\phi$ a_{sl}					17 19	***	***	***	***	***	***
,	Charm mixing CPV in Charm	**						***	*	*	***	*

SUSY GUT CMM

^{✓=} SuperB can measure these modes



WG5: Spectroscopy, etc.

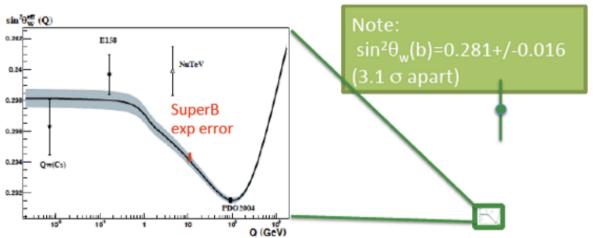
C. Sabelli

Spettroscopy

- Recent news: discovery of two charged four quarks states with b content (Z_b):
 - Further confirmation of the importance of investigating exotic spectroscopy
 - Additional stress on the need of sitting at the Y(5S) for a significant time

No significant change in strategy:

- High luminosity at Y(4S)
- Scan in the charmonium and bottomonium region

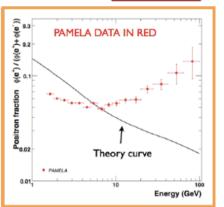


WG5: Spectroscopy, etc.

O. Vives M. Roney

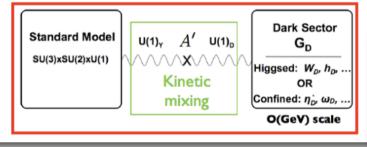
Electroweak

• Inconsistencies among $\sin^2\theta_w$ measurements at LEP could be further investigated with precise $A_{LR}(f)$, $A_{pol}(\tau)$ measurements at SuperB

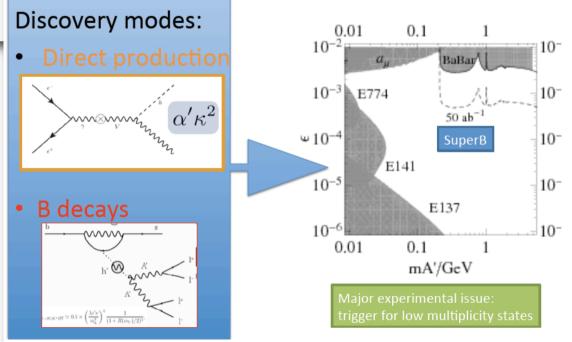

 Without polarization measurement dominated by measurements of g_A(=-0.5 in SM). Second order sensitivity to sin²θ_w → polarization is critical

By-product: tau polarization can be used to measure beam polarization

Search for Dark Forces L. Barze'


Results from Pamela/Fermi: excess of positrons of astrophysical origin

- → Due to particles decaying into e+e- with m<2m_p?
- → "Dark" gauge sector



M. Graham B. Echenard

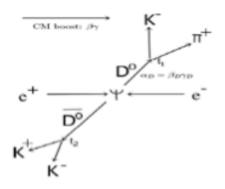
WG5: Spectroscopy, etc.

SuperB Sensitivity to dark forces

Charm physics

Threshold Running Scenario

- □ The run envisaged here is a 500 fb⁻¹ exposure at $\psi(3770)$
 - About 600 x CLEO-c and (50-100) x BES III
 - Just above DD threshold
 - At one-tenth nominal luminosity, Super B can complete this in a few months
 - Set up and tuning of final focus may take another few months
 Perhaps a year altogether ?
- Since Elba 2011 and the White Paper new possibilities exist
 - Perhaps the boost can be raised from βy=0.23 to 0.91 (P. Raimondi)
 - Maybe other thresholds or even larger runs can be made.

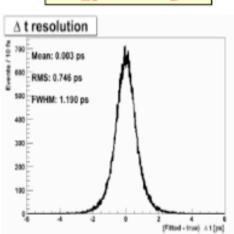


Charm session

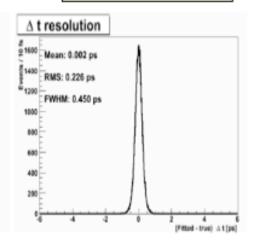
Time Resolution Study

Rolf Andreassen, U. Cincinnati

 $\alpha_D \sim 0.147$ $\alpha_B \sim 0.062$



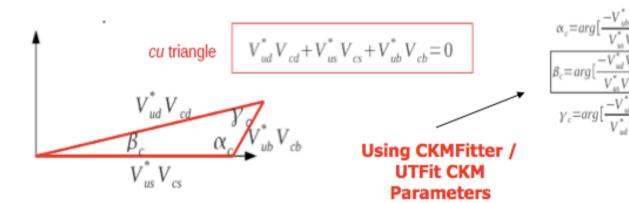
$$\Delta t = \frac{\Delta z}{\beta \gamma} + \frac{\alpha_D}{\beta} \Sigma t \cos \theta$$


Look at decay chain ψ(3770) → D⁰D⁰,
 with D⁰ → K⁻π⁺, D0 → K⁻K⁺.

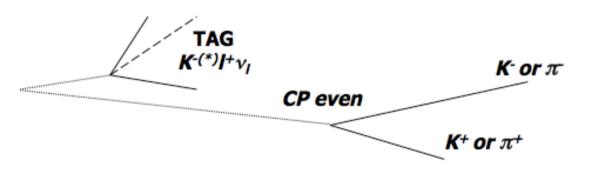
- Require all four tracks to be truth matched.
- Fit full decay tree and extract decay vertices; require probability of fit greater than 1% and that error on t be less than 0.3 ps (high boost) or 1.2 ps (low boost).

LOW BOOST $\beta \gamma = 0.23$ $\sigma_{\Delta t} \sim 1.5 \tau_D^0$

HIGH BOOST $\beta \gamma = \mathbf{0.91}$ $\sigma_{\Delta t} \sim \mathbf{0.5} \tau_{D}^{0}$



Charm

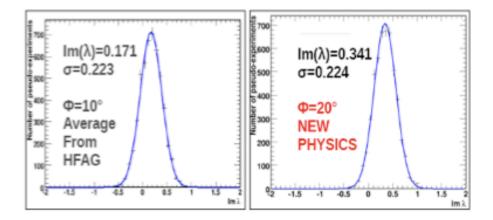

TD CPV?

Gianluca Inguglia, A. Bevan, B. Meadows

Could we look into the "Charm (cu) Triangle" for 1st time?

□ Measure β_c and ϕ_{Mix} from two main channels:

Toy Simulation of TDCPV at $\psi(3770)$


500 fb⁻¹ →160K events projected from CLEO-c

- Possible to add
 - <u>u</u> and K* channels (<u>x</u> 3)
 - Other CP channels (x 2)

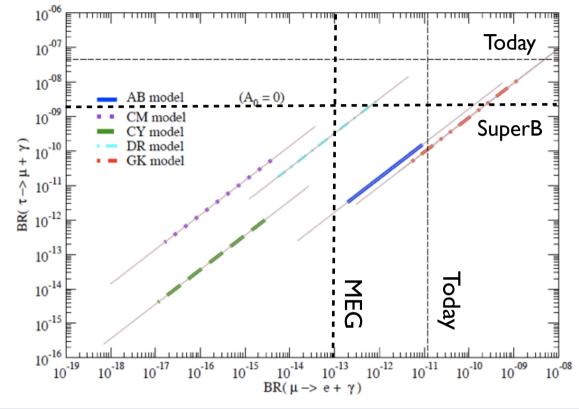
$$\rightarrow \sigma(\phi_M) \sim 3^{\circ}$$

□ Competitive with measurement of ϕ_M using 75 fb⁻¹at Y(4S)

BUT get there in ~ 1 year !!

Include constraint from other ϕ_M measurements \rightarrow Begin to measure β_c

Only toy studies so far Comparison with similar analyses at Y(4S) and at LHCb to be made.



• Fernando...

SuperB vs MEG and Mu2E and NP models predicting LFV

A. Lusiani

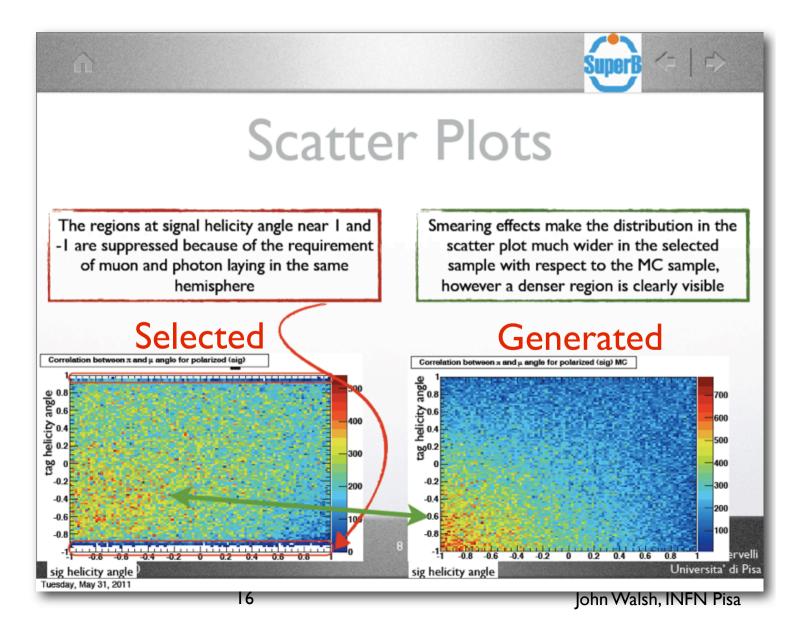
C.H.Albright, Mu-Chun Chen, LFV in Predictive Susy GUT Models

XVII SuperB Workshop and Kick Off Meeting - La Biodola, Italy, 31 May 2011

Conclusions

- ♦ published NP models LFV predictions: Mu2e more sensitive than MEG more sensitive than SuperB
- correlations between muon and tau LFV come
 - partly from experimental constraints on NP parameters
 - but also from assumptions driven by elegance, simplicity, similarity with low energy physics (flavour symmetries, mixing & mass hierarchies)
- muon and tau LFV measurements are both necessary to probe the most general NP structure that is allowed by today's measurements

8


John Walsh, INFN Pisa

tau physics

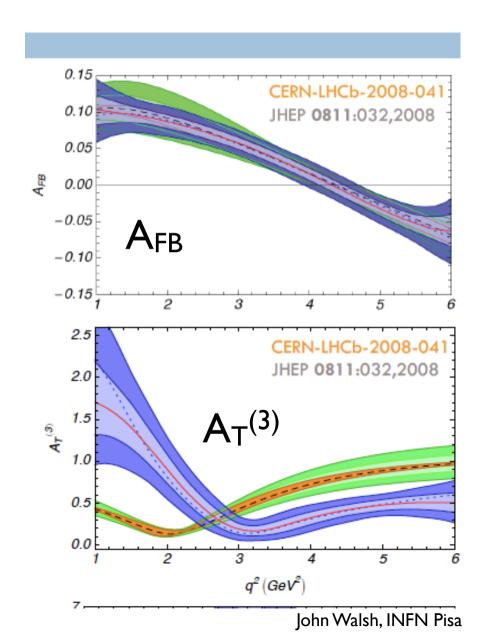
 Helicity angle correlations between sig and tag taus with beam polarization – A. Cervelli

Correlation persists, but is diluted by selection.

b→sll dedicated session

- Get theorists & experimentalists in the same room and discuss:
 - capabilities of LHCb/SuperB/Belle
 - theoretical uncertainties in observables
 - exclusive vs. inclusive measurements, etc.

	Tuesday, 31 May 2011	
08:00		
	[184] K* mu mu at LHCb by Dr. Will REECE (CERN) (Sala Bonaparte 2: 08:30 - 08:50)	S slides
09:00	[185] BaBar/SuperB exclusive and inclusive by Prof. Gerald EIGEN (University of Bergen) (Sala Bonaparte 2: 08:50 - 09:10)	S slides
	[186] SuperB sensitivity fitting studies by Dr. Kevin FLOOD (Caltech) (Sala Bonaparte 2: 09:10 - 09:30)	S slides
	[187] Exclusive and inclusive theory: low q2 region by Tobias HURTH (Johannes Gutenberg-University, Mainz) (Sala Bonaparte 2: 09:30 - 09:50)	S slides
10:00	[188] Exclusive high q2 region by Dr. Christoph BOBETH (TU Munich (IAS/Excellence cluster universe)) (Sala Bonaparte 2: 09:50 - 10:10)	S slides
	[189] Discussion (Sala Bonaparte 2: 10:10 - 10:30)	


b→sll: LHCb analysis of B→K* $\mu\mu$

from Will Reece

SM Theory Distribution Toy fits to SUSY model b (C'₇ != 0) 1, 2σ

 Traditional observables such as F_L (K* polarization fraction) and A_{FB} (lepton F-B asymmetry) not necessarily sensitive to all NP models, e.g. right-handed currents

 "New" asymmetries, measured with high-statistics full angular analysis, can be more sensitive in some cases

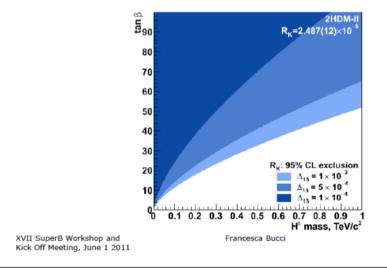
b \rightarrow sll: Inclusive vs. Exclusive: q_0^2 (A_{FB} zero)

from Tobias Hurth

Exclusive versus Inclusive SLHCb versus SFF Important role of Λ/m_b corrections Measurement of inclusive modes restricted to e^+e^- machines. (S)LHC experiments: Focus on theoretically clean exclusive modes necessary. Well-known example: Zero of forward-backward-charge asymmetry in $b \to s \ell^+ \ell^-$ NNLO vs NLO 0.15 dA_{FB}/dq^2 0.10 0.1 $d\mathcal{A}/dq^2$ LŌ -0.1-0.05-0.2NLO -0.10 -0.32 5 q^2 (GeV²) Exclusive Zero: Theoretical error: $9\% + O(\Lambda/m_b)$ uncertainty Egede, Hurth, Matias, Ramon, Reece arXiv:0807.2589 Experimental error at SLHC: 2.1% Libby Inclusive Zero: Theoretical error: O(5%) Huber, Hurth, Lunghl, arXiv:0712.3009 Experimental error at SFF: 4 – 6% Browder, Cluchini, Gershon, Hazumi, Hurth, Okada, Stocchi arXiv:0710.3799

"Other Experiments" session

Presentations from a series of flavour experiments



NA62: F. Bucci

$R_{K} = \Gamma(K^{+} \rightarrow e^{+}\nu) / \Gamma(K^{+} \rightarrow \mu^{+}\nu)$

R_K: Sensitivity to NP

For non-tiny values of the LFV s-lepton mixing Δ_{13} the sensitivity to H^{\pm} in $R_{\mbox{\tiny K}}$ is strong

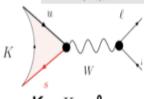
Decay Mode	Events			
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [$flux = 4.8 \times 10^{12} decay/year$]	55 evt/year			
$K^+ \to \pi^+ \pi^0 \ [\eta_{x0} = 2 \times 10^{-8} (3.5 \times 10^{-8})]$	4.3% (7.5%)			
$K^{\downarrow} \rightarrow \mu^{\downarrow} \nu$	2.2%			
K⁺→e⁺π⁺π⁻ν	≤3%			
Other 3 – track decays	≤1.5%			
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%			
Κ ⁺→μ⁺νγ	~0.7%			
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible			
Expected background	≤13.5% (≤17%)			

15

KLOE-2: A. Passeri

KLOE-1 core bussiness: Vus

$$\Gamma(K_{B(\gamma)}) = \frac{C_K^2 G_F^2 M_K^5}{192\pi^3} \frac{S_{EW}}{S_{EW}} |V_{us}|^2 |f_+^{K^0\pi^-}(0)|^2 I_{\underline{K\ell}}(\lambda_{+,0}) (1 + \delta_{SU(2)}^K + \delta_{\underline{K\ell}}^{\underline{K\ell}})^2$$


$$\stackrel{\circ}{\longrightarrow} \text{Precise determination of } \underline{V}_{\underline{us}}$$

$$\stackrel{\circ}{\longrightarrow} \text{Test of Lepton universality Ke3}$$

 $\mathbf{K}_{\mathbf{\ell}\mathbf{3}}: \mathbf{K} \rightarrow \pi \; \mathbf{\ell} \; \mathbf{v}$

- - * Test of Lepton universality Ke3 vs Kμ3
 - Most precise test of CKM unitarity
 - Lepton-Quark universality of weak int.

$$\frac{\Gamma(K_{\mu 2(\gamma)})}{\Gamma(\pi_{\mu 2(\gamma)})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \times \frac{f_{\rm K}}{f_{\pi}} \times \frac{M_{\rm K}(1-m_{\mu}^2/M_{\rm K}^2)^2}{m_{\pi}(1-m_{\mu}^2/m_{\pi}^2)^2} \times (1+\alpha({\color{blue}C_{\rm K}}-{\color{blue}C_{\rm K}}))$$

K₂: K→ ℓ ν Helicity suppressed: enhanced sensitivity to NP

❖ Precise determination of <u>Vus/Vud</u>

Test of Physics beyond the SM

· right-handed contributions to charged weak currents

· charged Higgs exchange (2 Higgs doublet scenarios)

❖ Lepton Flavor Violation test with $\Gamma(K_{e2})/\Gamma(K_{\mu 2})$

A.Passeri

Physics @KLOE-2

Sensitivity @ KLOE-2

		/0 CII	Div	·	·	-K6
K _L e3	0.2155(4)	0.20	0.09	0.13	0.11	0.06
Κ _L μ 3	0.2167(4)	0.21	0.10	0.13	0.11	0.08
K _s e3	0.2153(7)	0.32	0.30	0.03	0.11	0.06
K±e3	0.2152(10)	0.47	0.25	0.05	0.40	0.06
<i>K</i> ±μ3	0.2132(10)	0.48	0.27	0.05	0.39	0.08

% err

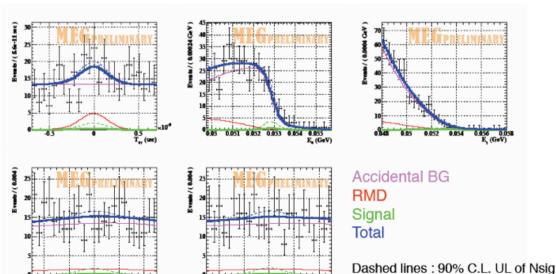
 $\Gamma(K_{\mu 2})/\Gamma(\pi_{\mu 2})$

MEG: G. Signorelli

Upper limit

• From the analysis of the 2009 data our limit on the BR is the following:

$$\frac{\mathcal{B}(\mu^+ \to e^+ \gamma)}{\mathcal{B}(\mu^+ \to e^+ \nu \bar{\nu})} < 1.5 \times 10^{-11} \qquad \text{MEG}_{\text{PRELIMINARY}}$$

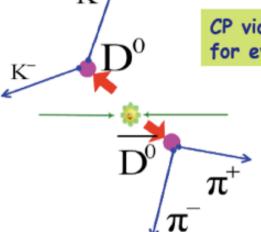

cfr. MEGA limit BR < 1.2 x 10⁻¹¹ @ 90% C.L.

Likelihood fit result

- N_{sig} < 14.5 @ 90% C.L., N_{sig} best-fit value = 3.0
- N_{sig} = 0 is in 90% confidence region

be consistent (Nsig best fit = 3.0-4.5, UL = $1.2-1.5\times10^{-11}$)

- C.L @0: 40÷60% depending on the statistical approach



Fitting was done by three groups with different parametrization, analysis window and statistical approaches, and confirmed to

BES III: H. Li

CP violation near threshold

CP violating asymmetries can be measured by searching for events with two CP odd or two CP even final states:

$$\pi^+\pi^-, K^+K^-, \pi^0\pi^0, Ks\pi^0,$$
for the decay of $\psi'' \to D^0\overline{D}^0 \to f_1f_2$

$$\mathsf{CP}(f_1f_2) = \mathsf{CP}(f_1) \cdot \mathsf{CP}(f_2) \cdot (-1)^\mathsf{L} = -$$

$$\mathsf{CP}(\psi'') = +$$

 A_{CP} sensitivity : $\Delta A \sim 10^{-3}$

CP violation in mixing can be measured with:

$$A_{SL} = \frac{\Gamma_{l+l+} - \Gamma_{l-l-}}{\Gamma_{l+l+} + \Gamma_{l-l-}} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

With 10^8 D pairs in $(K^+e^-v)(K^+e^-v)$ mode, |q/p| can be measured with (20-30)% accuracy. Current world averaged value is 0.86 ± 0.16 .

June 1 2011 Hai-Bo Li (IHEP) 30

PANDA: P. Gianotti

Future p-pbar experiment to study mass range 2-6 GeV

The X(3872) state

A charmonium(-like) state found in e+ e-

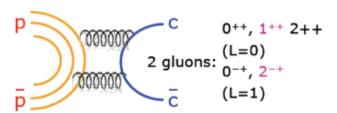
$$X(3872) \rightarrow J/\psi \pi^{+}\pi^{-}$$

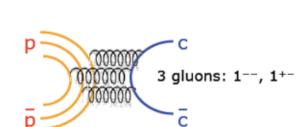
Not found in formation in e⁺e⁻ collision

$$\rightarrow$$
 Not J^{PC} = 1--

Observation of decay into $J/\psi \gamma$

$$\rightarrow$$
 C=+1


Mass of X(3872) $\rightarrow D^0\overline{D}^{*0}$ shifted by ~3 MeV/c²


→ S-wave molecular state?

Width is unknown lower limit $\Gamma < 2.3 \text{ MeV/}c^2$ (Belle)

Helicity amplitude analysis from CDF

→ E.g.
$$J^{PC} = 1^{++}$$
 or 2^{-+}

Quantum numbers can be determined by studying angular distributions

Organization

Conveners: Adrian Bevan, Marco Ciuchini, David Brown, John Walsh

- B_{u,d} physics (Bevan)
 - mixing and CPV (Bevan,?)
 - rare/radiative/semileptonic decays (Walsh, Hurth)
- Tau (Roney)
 - LFV (Lusiani, ?)
 - tau properties (?,Vives)
 - V_{us} (Antonelli, ?)
- Charm (Meadows)
 - mixing and CPV (Meadows, Bigi)
 - direct CPV

(Neri, Purohit)

- FCNC
- B_s (Drutskoy)
 - still thinking about sub-groups
- Other Physics (WG5) (Faccini)
 - spectroscopy (Faccini, Polosa)
 - electroweak physics (Roney,?)
 - dark forces (Echenard, Polosa)

Organization II

Theory and Tools

- Phenomenology (Ciuchini)
 - model independent/CKM/EFT (Ciuchini)
 - MSSM (Silvestrini)
 - SUSY-GUT (Kou)
 - extra dimensions (Blanke)
 - Little higgs (Tarantino)
 - **SM4** (?)
- Non-perturbative methods (?)
 - lattice QCD (Lubicz)
 - HQE (?)
 - QCD sum rules (?)
- Tools (Rama)
 - Many thanks to Dave Brown for his work as Tools Coordinator!

Comparison document

- Short (< 20 pages) document to compare and contrast the SuperB physics program with other flavour experiments:
 - LHCb + SLHCb
 - Belle II
 - BES III
 - NA62, KOTO
 - MEG, COMET, Mu2e
- Very even-handed and fair; soliciting feedback from LHCb and Belle II physics conveners
- Regular bi-weekly meetings → converging rapidly, first complete draft almost ready, will be finalized by July I
- Participants: Adrian Bevan (primary editor), Ciuchini, Walsh, Giorgi, Meadows, Lusiani, Drutskoy, Silvestrini, Tarantino, Cervelli, Perez, Stocchi, Brown

TDR Planning

- Plan on producing the Physics TDR on the time scale of early next year
- A working outline has been posted on the wiki: http://mailman.fe.infn.it/superbwiki/index.php/SuperB_Physics_TDR
- We have a good starting point: the Physics White Paper (arXiv:1008.1541), an 85-page document completed last year.
 - evaluating areas of the WP that need additional work
 - WG's have been asked to provide full wish-list of channels/studies to perform
 - Prioritize and identify channels that need additional work prior to TDR – perhaps 2-3 channels per working group
- Next Physics Meeting: June 14 would like a first pass of the physics list at that time

Workshop at Frascati in December 2011

- 2-day Physics Workshop to precede General Meeting: 11-12
 December
- Expect significant contribution from theorists hence early planning needed
- Obviously, many things can change, but we've starting to form ideas

Proposal for sessions

subjects we would like to see discussed: these are some suggestions, please add to them

- Day 1
 - Welcome: Aims/intro
 - DESY <u>sll</u> workshop summary
 - WG5 session
 - progress on α
 - b→sv session
 - Theory + <u>Expt</u> overview, <u>esp</u>
 A_{CP}
 - B_{uds} session(s)
 - Bs→gg &/or ASL Fast Sim progress
 - b→sll inclusive/exclusive FastSim progress

- Day 2
 - charm
 - TDCPV progress
 - tau
 - CPV
 - Lattice
 - 2011 Comparison with CDR predictions
 - Planning Session
 - Discuss tools required, and what <u>FastSim</u> mode studies we need for <u>TDR/Book</u>
 - TDR / Elba planning session

New areas of interest

- Time-dependent CP violation at charm threshold
- B_s physics
- CP violation in T decays
- Measurement of α_s
- and probably others...
- People interested in working on these (or other) topics are encouraged to contact the physics conveners
- Reminder: regular physics meetings held every other Tuesday at 5 pm European time.