Graphene: An electron wonderland

Vittorio Pellegrini
NEST Istituto Nanoscienze CNR \&
Scuola Normale Superiore
Pisa, Italy

Experimental

Achintya Singha - Bose Institute India Sarah Goler - NEST \& SNS, Pisa
Biswajit Karmakar - NEST \& SNS, Pisa
Aron Pinczuk - Columbia U. USA
Philip Kim - Columbia U. USA
Theoretical
Marco Polini - NEST \& SNS, Pisa Giovanni Vignale - U. Missouri, USA
Misha Kastnelson - Radboud University, Nijmegen

Common Carbon-based materials

sp^{3} hybridization

sp^{2} hybridization

Graphite is a semi-metal and a very good conductor

Graphene (one atomic layer of graphite)

Graphene (one atomic layer of graphite)

2D electron or hole gas

Graphene (one atomic layer of graphite)

2D electron or hole gas

n or p type doping

Methods of fabrication

Methods of fabrication

First application of exfoliated graphite 1928

Giuseppe Biagi

Mechanical Exfoliation (scotch tape)

Novoselov, Geim et al Science (2004)
Zhang, Tan, Stormer \& Kim - Nature (2005)

1. Graphene flakes are exfoliated with scotch tape!
2. Tape is dissolved in acetone
3. The solution is deposited on $\mathrm{n}^{+} \mathrm{Si}: \mathrm{SiO}_{2}$

Graphene monolayers are visible under the optical microscope

Graphene monolayers are visible under the optical microscope

Optical imaging on SiO_{2}

Graphene monolayers are visible under the optical microscope

Optical imaging on SiO_{2}

AFM

- graph monolayer ~ $4 \AA$
- "Dead space" ~ $5 \AA$
A. Geim et al - Nature Materials (2007)

SEM imaging

Discovery and fabrication

Graphite: invention of the pencil in 1564. Writing process probably already produces monolayers...

Graphene monolayers: for the first time fabricated and prepared by mechanical exfoliation in 2004
Novoselov et al., Science 2004

Optical visibility

S. Roddaro, VP et al. NanoLetters (2007)

Optical visibility

S. Roddaro, VP et al. NanoLetters (2007)

Optical visibility

S. Roddaro, VP et al. NanoLetters (2007)

Raman spectrum of graphite

CNRNANO

Raman spectrum depends on the number of layers

Raman spectrum depends on the number of layers

A. Ferrari et al. Phys. Rev. Lett. 97, 187401 (2006)

Graphene production in 2010

Graphene: a novel platform for applied physics

Photonics and optoelectronics
broadband tunability, ultrafast lasers, smart windows, transparent conductors, Terahertz plasmon-based photodetectors, etc
2) Energy
hydrogen storage, supercapacitors
3) Electronics and sensors
ultrafast transistors, electronic properties are very sensitive to atoms and molecules deposited on it, etc
4) Nanomechanics
ultrastiff one-atom-thick membrane

Graphene and Hydrogen

Stable and disorder-free nanoribbons can be sculpted in graphane

Corrugation favours hydrogen adsorption

V. Tozzini and VP Phys. Rev. B (2010)
V. Tozzini and VP, submitted

Graphene: a novel platform for fundamental physics

Fundamentals:

High-energy physics on a table top: massless Dirac fermions akin to neutrinos Klein tunneling, Zitterbewegung, Atomic collapse, Supercritical charges, etc
2) Elastic one-atom thick membrane

Statistical mechanics in 2D, ripples, corrugations, synthetic gauge fields, gravity in curved space, etc
3) A new-type of many-body problem Fractional quantum Hall states, non-Galileian-protected plasmons, spontaneous pseudospin magnetism and pseudospin-based quantum technology, high- T_{c} exciton condensation, etc

Graphene: a novel platform for fundamental physics

Fundamentals:

High-energy physics on a table top: massless Dirac fermions akin to neutrinos Klein tunneling, Zitterbewegung, Atomic collapse, Supercritical charges, etc
2) Elastic one-atom thick membrane

Statistical mechanics in 2D, ripples, corrugations, synthetic gauge fields, gravity in curved space, etc
3) A new-type of many-body problem

Fractional quantum Hall states, non-Galileian-protected plasmons, spontaneous pseudospin magnetism and pseudospin-based quantum technology, high- T_{c} exciton condensation, etc

Plasmarons. Science 2010 NANO-NEST \& LBN, Texas U. Erlagen

Magneto-polarons.
PRL 2010
NANO-NEST \& Columbia

Tight - binding model

Tight - binding model

Unit cell

Tight - binding model

Tight - binding model

$t \sim 0.1 \mathrm{eV}$

B

Next Nearest neighbors

Energy bands in Graphene

$$
H_{0}=-t \sum_{i \in A} \sum_{j=1}^{3}\left(b_{\mathbf{R}_{i}+\mathbf{e}_{j}}^{\dagger} a_{\mathbf{R}_{i}}+\text { H.c. }\right)
$$

$$
\varepsilon_{\mathbf{k}}= \pm t \sqrt{\left[\sum_{j=1}^{3} \cos \left(\mathbf{k} \cdot \mathbf{e}_{j}\right)\right]^{2}+\left[\sum_{j=1}^{3} \sin \left(\mathbf{k} \cdot \mathbf{e}_{j}\right)\right]^{2}}
$$

+ upper π band
- lower π^{*} band

Pseudospin degrees of freedom in graphene

pseudospin and real spin!

2 valleys - 2 spin states A.K. Geim and A.H. MacDonald, Physics Today (2007) emergent $S U(4)$ symmetry

Graphene's band structure

Continuum limit near the points K and K^{\prime} (valley pseudospin ± 1)

$$
\mathcal{H}^{ \pm}(\boldsymbol{\kappa})=\frac{3}{2} t a\left(\begin{array}{cc}
0 & \kappa_{1} \mp i \kappa_{2} \\
\kappa_{1} \pm i \kappa_{2} & 0
\end{array}\right)
$$

$$
H=v_{F}(\sigma \cdot \mathbf{p})
$$

$$
v_{F}=3 t a / 2=c / 300
$$

massless Dirac fermions!

QED on the pencil trace

"Schrödinger fermions"

metals and
semiconductors
real
Dirac fermions

neutron stars and accelerators
massless
Dirac fermions

monolayer graphene

massive chiral fermions

bilayer graphene

Manifestations of Dirac fermions: Landau levels

Manifestations of Dirac fermions: Landau levels

Manifestations of Dirac fermions: Landau levels

$$
\begin{aligned}
& \varepsilon_{j, \pm}= \pm \hbar \omega_{c}\left(j+\frac{1}{2}\right) \\
& \omega_{c}=e B /(m c)=\hbar /\left(m l_{B}^{2}\right) \\
& l_{B}=\sqrt{\hbar c /(e B)} \\
& B=10 T \quad \hbar \omega_{c} \approx 1 K
\end{aligned}
$$

Manifestations of Dirac fermions: Landau levels

$$
\begin{aligned}
& \varepsilon_{j, \pm}= \pm \hbar \omega_{c}\left(j+\frac{1}{2}\right) \\
& \omega_{c}=e B /(m c)=\hbar /\left(m l_{B}^{2}\right) \\
& l_{B}=\sqrt{\hbar c /(e B)} \\
& B=10 T \quad \hbar \omega_{c} \approx 1 K
\end{aligned}
$$

Manifestations of Dirac fermions: Landau levels

$$
\begin{aligned}
& \varepsilon_{j, \pm}= \pm \hbar \omega_{c}\left(j+\frac{1}{2}\right) \\
& \omega_{c}=e B /(m c)=\hbar /\left(m l_{B}^{2}\right) \\
& l_{B}=\sqrt{\hbar c /(e B)} \\
& B=10 T \quad \hbar \omega_{c} \approx 1 K
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{j, \pm}= \pm \hbar \omega_{c} \sqrt{n} \\
& \omega_{c}=v_{F} / l_{B}=v_{F} \sqrt{e B / \hbar c} \\
& B=10 T \quad \hbar \omega_{c} \approx 1500 K
\end{aligned}
$$

Manifestations of Dirac fermions: Landau levels

Manifestations of Dirac fermions: Magneto-phonon resonance

Manifestations of Dirac fermions: Magneto-phonon resonance

J. Yan, VP et al. Phys. Rev. Lett. (2010)

CNRNANO

Manifestations of Dirac fermions: Half-integer QHE

Novoselov, et al - Nature 438, 197 (2005)
Zhang, et al - Nature 438, 201 (2005)

Novoselov, et al - Science 315, 1379 (2007)

CNRNANO

Manifestations of Dirac fermions: absorption

 determined by fine structure constant

Nair, et al - Science (2008)

Manifestations of Dirac fermions: Klein paradox

2 QUANTUM MECHANICS

a

Transmission rate T against incident angle; $E=80 \mathrm{meV}, \mathrm{D}=100 \mathrm{~nm}, \mathrm{VO}=200 \mathrm{meV}$ (red curve), VO = 285 meV (blue curve)
M.I.Katsnelson,K.S.Novoselov,A.K.Geim, NaturePhysics 2, 620 (2006)

Observed in 2009:
A.F. Young, P. Kim Nature Physics (2009)
N. Stadler et al., PRL (2009)

Role of Coulomb interactions

Chiral Symmetry breaking
In particle physics, strong nuclear interactions (QCD):

- break approximate chiral symmetry
- Quarks get mass,
- Pions are the (pseudo-) Goldstone bosons.
- Could this happen in graphene?

Hubbard model with $1 / 2$ filling

$$
\begin{aligned}
& H=t \sum_{A, b_{i}}\left(\psi_{A+b_{i}}^{\dagger} \psi_{A}+\psi_{A}^{\dagger} \psi_{A+b_{i}}\right)+U \sum_{n \in A, B}\left(\sum_{\sigma=\uparrow \downarrow} \psi_{\sigma n}^{\dagger} \psi_{\sigma n}-1\right)^{2} \\
& U \approx 10 e v \\
& H_{\text {Coul }}=\frac{1}{2} \sum_{x y}\left(\psi^{\dagger}(x) \psi(x)-\frac{1}{2}\right) \frac{e^{2}}{4 \pi|x-y|}\left(\psi^{\dagger}(y) \psi(y)-\frac{1}{2}\right)
\end{aligned}
$$

Gusynin et.al. PRL., 73 (1994) 3499; Phys.Rev..D, 52
(1995) 4718; Phys.Rev.B, 74 (2006) 195429

Proposals and experiments of quantum simulations

Quantum phase transitions with cold atoms
M. Greiner et al. Nature. 4, 757 (2002)

G-B Jo et al, Science 3251521 (2009)
LENS Firenze

Quantum magnetisms with trapped ions A. Friedenauer et al. Nat. Phys. 4, 757 (2008)

Hubbard models in quantum-dot arrays
T. Byrnes et al., Phys. Rev. Lett. 99, 016405 (2007)
T. Byrnes et al., Phys. Rev. B 78, 075320 (2008)

Artificial lattices in quantum semiconductor structures

M. Gibertini, VP et al Phys Rev B RC (2009)
Appl. Phys.Lett. (2010)
for flavor-spin order

M. Gibertini et al., PRB 79, 241406(R) (2009)

Resonant inelastic light scattering

Translational invariance
$\mathbf{q}=\mathbf{k}_{\mathbf{L} / /}-\mathbf{k}_{\mathbf{S} / /}=\left(\mathrm{k}_{\mathrm{L}}-\mathrm{k}_{\mathrm{S}}\right) \sin \theta<\sim 10^{5} \mathrm{~cm}^{-1}$

Electrons in Artificial lattices

Sub-lattice degeneracy \rightarrow Flavor degree of freedom

$E_{s w}=g \mu_{B} B$

Flavor B

Similar phenomena predicted for graphene at high fields J. Alicea, M.P. Fisher Physical Review B 74, 075422 (2006)

Sub-lattice degeneracy \rightarrow Flavor degree of freedom

$$
E_{S W}=g \mu_{B} B \quad E_{S F}=g \mu_{B} B+\Delta
$$

Similar phenomena predicted for graphene at high fields J. Alicea, M.P. Fisher Physical Review B 74, 075422 (2006)

Spin-flavor modes

$E_{S W}=g \mu_{B} B$
In-phase spin mode between the two sublattices

Spin-flavor modes

$E_{s W}=g \mu_{B} B$
In-phase spin mode between the two sublattices
$E_{S F}=g \mu_{B} B+\Delta$ Out-of-phase spin mode between the two sublattices

Spin-flavor modes

Spin-flavor modes

Spontaneous symmetry breaking \rightarrow lattice scale order (CDW)?

Spontaneous symmetry breaking \rightarrow

 lattice scale order (CDW)?

Spontaneous symmetry breaking \rightarrow

 lattice scale order (CDW)?

(F)

Graphene single layer

Mother of all-carbon materials (fullerenes, nanotubes, graphite): made of benzene rings stripped of H atoms

