Charmless *B* Decays in *B*-Factories

Chih-hsiang Cheng Caltech Les Rencontres de Physique de la Vallee d'Aoste La Thuile, Aosta Valley, Italy 2011/02/27 – 03/05

Overview

- *B* mesons decay predominately through tree level $b \rightarrow cW^*$, leaving a charm meson in the final states.
- In <u>charmless</u> hadronic *B* decays, other types of diagrams are enhanced. They provide a rich laboratory to study *CP-violations, long/short-distance QCD effects, hadronic phases, and New Physics search.*
- About 100 charmless *B* decay modes have been measured with >4 σ significance, mostly from *BABAR* and Belle. Their BF's range from few×10⁻⁵ to 10⁻⁶.

Large number of channels

Charmless Mesonic B Branching Fractions

Charmless programs

- CKM angle α ($\pi\pi$, $\rho\rho$)
- CKM sin2 β_{eff} : Hint of discrepancy from $\frac{da}{V_{cd}}$ golden modes $B \rightarrow J/\psi K$.
- CKM angle γ
- Direct CP violation: $K\pi$ puzzle? $\Delta A_{K\pi} = A_{CP}(K^+\pi^0) - A_{CP}(K^+\pi^-) \neq 0$
- Polarization in $B \rightarrow VV$, TV
- Search for enhancement in b→s,d penguins
- Baryonic decays

$\frac{V_{ud} V_u}{V_{cd} V_c}$	$\left \begin{array}{c} (\rho, \eta) \\ \alpha = \phi_2 \end{array} \right $	$\frac{V_{td} V_t}{V_{cd} V_t}$	$\frac{\left \frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*}\right }{\left \frac{V_{td} V_{cb}^*}{V_{cb}}\right }$	
($\int_{0,0)} \gamma = \phi_3$ sin(2 β^{eff}) =	$\beta = \frac{\beta}{\beta}$	(1,0)	
h 1000	World Average	$\sin(2\varphi_1)$	PRELIMINARY	
b→ccs			0.67 ± 0.02	
1 A K *	Average :		0.56 +0.16	
φ K ⁰ n' K ⁰	Average	+ +	0.56 +0.16	
η΄ K ⁰	Average		0.59 ± 0.07	
η΄ Κ ⁰ Κ _S K _S K	Average _s Average		0.59 ± 0.07 0.74 ± 0.17	
η΄ Κ ⁰ Κ _S K _S Κ π ⁰ Κ ⁰	Average _s Average Average		0.59 ± 0.07 0.74 ± 0.17 0.57 ± 0.17	
η΄ Κ ⁰ Κ _S K _S Κ π ⁰ Κ ⁰ ρ ⁰ K _S	Average S Average Average Average		0.59 ± 0.07 0.74 ± 0.17	
η΄ Κ ⁰ Κ _S K _S K π ⁰ Κ ⁰ ρ ⁰ K _S ω K _S	Average _s Average Average		$\begin{array}{c} 0.59 \pm 0.07 \\ 0.74 \pm 0.17 \\ 0.57 \pm 0.17 \\ 0.54 \begin{array}{c} {}^{+0.18} \\ {}^{+0.21} \end{array}$	
η΄ Κ ⁰ K _S K _S K π ⁰ K ⁰ ρ ⁰ K _S ω K _S f ₀ K _S	Average Average Average Average Average		$\begin{array}{c} 0.59 \pm 0.07 \\ 0.74 \pm 0.17 \\ 0.57 \pm 0.17 \\ 0.54 \begin{array}{c} {}^{+0.18} \\ {}^{+0.21} \\ 0.45 \pm 0.24 \end{array}$	
η΄ Κ ⁰ K _S K _S K π ⁰ K ⁰ ρ ⁰ K _S ω K _S f ₀ K _S	Average Average Average Average Average Average		$\begin{array}{c} 0.59 \pm 0.07 \\ 0.74 \pm 0.17 \\ 0.57 \pm 0.17 \\ 0.54 \begin{array}{c} {}^{+0.18} \\ {}^{+0.21} \\ 0.45 \pm 0.24 \\ \end{array}$	
$\eta' K^{0}$ $K_{S} K_{S} K_{S} K_{S}$ $\pi^{0} K^{0}$ $\rho^{0} K_{S}$ ωK_{S} $f_{0} K_{S}$ $f_{2} K_{S}$ $f_{x} K_{S}$	Average Average Average Average Average Average Average		$\begin{array}{c} 0.59 \pm 0.07 \\ 0.74 \pm 0.17 \\ 0.57 \pm 0.17 \\ 0.54 \begin{array}{l} {}^{+0.18} \\ {}^{+0.21} \\ 0.45 \pm 0.24 \\ 0.62 \begin{array}{l} {}^{+0.11} \\ {}^{+0.13} \\ 0.48 \pm 0.53 \end{array}$	
$η' K^0$ $K_S K_S K_S K_S$ $π^0 K^0$ $ρ^0 K_S$ $ω K_S$ $f_0 K_S$ $f_2 K_S$ $f_2 K_S$ $f_2 K_S$ $r_2 K_S$ $r_3 R_S$ $π^0 π^0 K_S$	Average Average Average Average Average Average Average Average		$\begin{array}{c} 0.59 \pm 0.07 \\ 0.74 \pm 0.17 \\ 0.57 \pm 0.17 \\ 0.54 \begin{array}{l} {}^{+0.18} \\ {}^{+0.21} \\ 0.45 \pm 0.24 \\ 0.62 \begin{array}{l} {}^{+0.11} \\ {}^{+0.13} \\ 0.48 \pm 0.53 \\ 0.20 \pm 0.53 \end{array}$	
$η' K^0$ $K_S K_S K_S K_S$ $π^0 K^0$ $ρ^0 K_S$ $ω K_S$ $f_0 K_S$ $f_2 K_S$ $f_2 K_S$ $f_2 K_S$ $π^0 π^0 K_S$ $φ π^0 K_S$	Average Average Average Average Average Average Average Average Average		0.59 ± 0.07 0.74 ± 0.17 0.57 ± 0.17 $0.54 \stackrel{+0.18}{-0.21}$ 0.45 ± 0.24 $0.62 \stackrel{+0.11}{-0.13}$ 0.48 ± 0.53 0.20 ± 0.53 -0.72 ± 0.71	

B factories

Separate signal from background

• Major background comes from continuum $e^+e^- \rightarrow q\bar{q}, q = u, d, s, c$

Inclusive $B \rightarrow K^{\pm,0}$, π^{\pm} beyond charm threshold

- Charmless decays have large contributions from penguin diagrams.
- New physics entering the loop could enhance the branching fraction.

- e.g., Randall-Sundrum warped top-condensation model radion field postulation $(b \rightarrow s\phi \rightarrow sg^*)$ enhances charmless BF by an order of magnitude.
- Strategy: fully reconstruct one *B* meson through $B \rightarrow D^{(*)}X$ and measure *K* or π with momentum beyond $b \rightarrow c$ kinematic threshold in recoiled *B*.
- SM prediction of partial BF $\sim 10^{-4}$.
- A significant inclusive signal has *not* been observed in previous experiments.

Analysis

 $\times 10^3$

continuum

Events / 2.5 MeV 00 00

100=

5.25

- $2 \times 10^6 B\underline{B}$ events reconstructed, from $383 \times 10^6 B\underline{B}$ pairs.
- High *p** (momentum at recoiled frame) *K* and *π* are selected.
- Veto D^+ , D^0 , Ds if they can be reconstructed.
- PDF variables: m_{ES}, Fisher, p* spectrum including various charm components.

5.26 5.27 5.28 5.29 m_{ES} (GeV) m_{ES} (GeV) m_{ES} (GeV) m_{ES} (GeV)

 $B\bar{B}$

p*(K*) [GeV]

Inclusive $B \rightarrow K^{\pm,0}$, π^{\pm} results

• $\mathcal{B}(B \to K^+ X, p^* > 2.34 \,\text{GeV}) = (1.2 \pm 0.3 \pm 0.4) \times 10^{-4}, \quad (< 1.9 \times 10^{-4} @90\% \text{C.L.}) \quad 2.9\sigma$ $\mathcal{B}(B \to K^0 X, p^* > 2.34 \,\text{GeV}) = (1.9 \pm 0.5 \pm 0.5) \times 10^{-4}, \quad (< 2.9 \times 10^{-4} @90\% \text{C.L.}) \quad 3.8\sigma$ $\mathcal{B}(B \to \pi^+ X, p^* > 2.34 \,\text{GeV}) = (3.7 \pm 0.5 \pm 0.6) \times 10^{-4}, \quad (< 2.9 \times 10^{-4} @90\% \text{C.L.}) \quad 3.7\sigma$

[PRD-RC 83, 031103 (2011)]

- In agreement with the Standard Model
- Exclude large enhancement from New Physics.

Polarization in $B \rightarrow Vector-Vector$

- Naive expectation: $f_L \sim 1$. $B \rightarrow \rho \rho$ have $f_L > 90\%$. However, $f_L \sim 50\%$ for $B \rightarrow \phi K^*$, and many other $b \rightarrow s$ penguin VV states.
- $\underline{B^+} \rightarrow \rho^0 K^{*+}$ had not been observed yet. Expect: BF~ $(5\pm 1) \times 10^{-6}$.

Charmless *B* Decays in *B*-Factories

 $B^+ \rightarrow \rho^0 K^{*+} f_0 K^{*+}$

- Reconstruct: $B^+ \to \rho K^{*+}$, $f_0(980)K^{*+}$, with $\rho, f_0 \to \pi^+\pi^-, K^{*+} \to K^+\pi^0, K_s^0\pi^+$
- Measure: branching fraction, polarization (ρK^*), direct CPV.
- Decay rate of $B \rightarrow \rho K^* \propto \frac{1 f_L}{4} \sin^2 \theta_{K^{*+}} \sin^2 \theta_{\rho^0} + f_L \cos^2 \theta_{K^{*+}} \cos^2 \theta_{\rho^0}$
 - after integrating out the angle between decay planes of two vectors.
- Seven variables in PDF: $\mathcal{P}_j(x_i) = \mathcal{P}_j(m_{\mathrm{ES}i}) \cdot \mathcal{P}_j(\Delta E_i) \cdot \mathcal{P}_j(NN_i)$ $\cdot \mathcal{P}_j(M_{\pi^+\pi^-i}) \cdot \mathcal{P}_j(M_{K\pi i}) \cdot \mathcal{P}_j(\cos \theta_{\pi^+\pi^-i}) \cdot \mathcal{P}_j(\cos \theta_{K\pi i})$
- 12 background components including continuum, various combination of combinatorials, higher resonances, η ', and non-resonant S-wave contributions.

Projection plots of $B^+ \rightarrow \rho^0 K^{*+}$, $f_0 K^{*+}$

Charmless *B* Decays in *B*-Factories

$B^+ \rightarrow \rho^0 K^{*+}, f_0 K^{*+}$ results

- Observation of $B^+ \to \rho^0 K^{*+}$ decay: BF $(B^+ \to \rho^0 K^{*+}) = (4.6 \pm 1.0 \pm 0.4) \times 10^{-6}$
- Improved BF($B^+ \rightarrow f_0 K^{*+}$)×BF($f_0 \rightarrow \pi^+ \pi^-$) = (4.2 ± 0.6 ± 0.3) × 10⁻⁶
- $f_L(B^+ \rightarrow \rho^0 K^{*+}) = 0.78 \pm 0.12 \pm 0.03$

 $4.4 \pm 2.0 \pm 0.5 \quad 0.94 \pm 0.27 \pm 0.03 \quad 0.59 \pm 0.31 \pm 0.03$

_

• consistent with large f_L ; the other two $K^*\rho$ modes are further away.

Previous results: 232M BB $B (B^+ \rightarrow \rho^0 K^{*+}) < 6.1 \times 10^{-6} (@90\% CL)$ $B (B^+ \rightarrow f_0(980) K^{*+}) = (5.2 \pm 1.2 \pm 0.5) 10^{-6}$ PRL 97, 201801 (2006)

 $4.2 \pm 0.6 \pm 0.3$

 $3.6 \pm 0.7 \pm 0.3$

 $5.2 \pm 1.0 \pm 0.3$

 $K^{*+} \to K^+ \ \pi^0$

 $K^{*+} \rightarrow K^0_S \pi^+$

 $K^{*+} \rightarrow K^+ \pi^0$

 $B^+ \to f_0(980) K^{*+}$

 $-0.15 \pm 0.12 \pm 0.03$

 $-0.34 \pm 0.16 \pm 0.03$

 $0.14 \pm 0.12 \pm 0.03$

$B^0 \to K^{*0} \overline{K}^{*0}$ motivation

- $B \to K^{*0}\overline{K}^{*0}$ is a pure $b \to d$ penguin, and should have the same f_L as $b \to s$ under U-spin symmetry.
- Possible explanations in the SM for small f_L : large f_T contributions from penguin annihilation or rescattering.
- If a large f_T is observed, a time-dependent CP asymmetry analysis to measure phase difference between $A_T(b \to d)$ and $A_T(\bar{b} \to \bar{d})$ could distinguish the two possible contributions which have different weak phases.

The penguin annihilation diagrams.

$$B^0 \to K^{*0} \bar{K}^{*0}, K^{*0} K^{*0}$$
 results

• Fit PDF: m_{ES} , ΔE , $m_{K_1^*}$, $m_{K_2^*}$, (and Fisher, K^* helicity angles: (BABAR)). • Belle fits K^*K^* and higher/non-resonances at once; BABARfits K^*K^* and subtract other contributions extrapolating from fit to higher resonance. $K^{*0}\overline{K^{*0}}\overline{K^{*0}} - f_L(K^{*0}\overline{K^{*0}}) - g_{(K^{*0}\overline{L}^{*0})} - g_{(K^{$

~ 2σ discrepancy in $\mathcal{B}(K^{*0}\overline{K}^{*0})$ between the two measurements.

Charmless 3-body

- Search new physics in $b \rightarrow s$ or $b \rightarrow d$ penguin dominated processes.
- Typical analysis involves Dalitz plot analysis, some with time dependence, and some need to utilize isospin/SU(3) symmetry.
 - Interferences among resonances allow CKM angles and strong phases measurement.
 - Eg., $\alpha : B \rightarrow \pi \pi \pi; \gamma : B \rightarrow K \pi \pi; \beta : B \rightarrow K_S K_S K_S$
 - Search for direct CPV in components.
- Other structure in Dalitz plot.

$B \rightarrow \phi \phi K$ analysis

• Possible new physics in $b \rightarrow s$ penguin. Interference with $B \rightarrow \eta_c K$ at $\phi \phi$ mass near η_c could produce large CPV.

- Non-zero direct CP asymmetry would be a smoking gun for New Physics.
 - Could be as large as 40%! (Haizumi, Phys. Lett. **B 583**, 285 (2004)).
- Study spin structure of $\phi\phi$ system. Only $J^P = 0^-$ component of 3-body *B* decay interfere with η_c .

Peaking background

- Peaking $B \rightarrow 5K$ background occupy different zones on $m_{\phi 1} m_{\phi 2}$ plane.
- Fit yields by zone and use cross-zone contributions determined by MC to estimate peaking background.

Fitting yields

Charmless B Decays in B-Factories

La Thuile, 2011/02/27 – 03/05

4.5

m_{\$\phi\phi\phi\phi}(GeV)}

 $A_{CP}(\phi\phi K^+)$ below and within η_c region, consistent with zero.

2.5

 (10^{-6})

BABAR

Belle

 $m_{\phi\phi}$

BABAR

Belle

2

3

3.5

 $\mathcal{B}(B^+ \to \phi \phi K^+)$

 $5.6 \pm 0.5 \pm 0.3$

 $3.2^{+0.6}_{-0.5} \pm 0.3$

 $< 2.85 \,\mathrm{GeV}$

 $-0.10 \pm 0.08 \pm 0.02$

 $0.01^{+0.19}_{-0.16} \pm 0.02$

Partial BF: $m_{\phi\phi} < 2.85 \,\text{GeV}$

 $2.94 - 2.98 \, \text{Ge}$

 $-0.10 \pm 0.15 \pm 0.03$

 $0.15^{+0.16}_{-0.17} \pm 0.02$

 $\mathcal{B}(B^0 \to \phi \phi K^0)$

 $4.5 \pm 0.8 \pm 0.3$

 $2.3^{+1.0}_{-0.7} \pm 0.2$

3.1 3 M_{4K} (GeV/c²

5

 $M_{\phi\phi} (GeV/c^2)$

3.1 3.2 (GeV/c²)

2.8

Angular study

Project J^P=0⁻ component by weighting m_{φφ}
by the product of Legendre polynomial and spherical harmonic

$$P_2(\cos\theta_1) \operatorname{Re} \left[Y_2^2(\theta_2, \chi) \right] = \frac{25}{4} \left\{ 3\cos^2(\theta_1) - 1 \right\} \sin^2(\theta_2) \cos(2\chi)$$

• Below η_c region is not consistent with $J^P = 0^-$. but consistent with $J^P = 0^+$.

Summary

- Very rich program in hadronic charmless *B* decays.
- More physics still to come after shutdowns of *B* factories.
- Inclusive $B \rightarrow K^{\pm,0}$, π^{\pm} beyond charm threshold:
 - Consistent with the SM, rule out large NP contribution to $b \rightarrow sg^*$.
- Observation of $B^+ \rightarrow \rho^0 K^{*+}$ and $B^0 \rightarrow K^{*0} \overline{K}^{*0}$ decays and measurement of their polarizations:
 - more pieces towards understanding $B \rightarrow VV$ polarization puzzle.
- BF, A_{CP}, and angular analysis of $B \rightarrow \phi \phi K$:
 - Clear signal, but A_{CP} consistent with zero. No large NP in the penguin.