Charmless B Decays in B-Factories

Overview

- B mesons decay predominately through tree level $b \rightarrow c W^{*}$, leaving a charm meson in the final states.
- In charmless hadronic B decays, other types of diagrams are enhanced. They provide a rich laboratory to study CP-violations, long/short-distance QCD effects, hadronic phases, and New Physics search.
- About 100 charmless B decay modes have been measured with $>4 \sigma$ significance, mostly from $B A B A R$ and Belle. Their BF's range from

Color-allowed Tree

W-annihilation

W-exchange

Penguin (Gluonic or EW)

Vertical W-loop few $\times 10^{-5}$ to 10^{-6}.

Large number of channels

Charmless Mesonic B Branching Fractions

Charmless programs

- CKM angle $\alpha(\pi \pi, \rho \rho)$ golden modes $B \rightarrow J / \psi K$.
- CKM angle γ
- Direct CP violation: $K \pi$ puzzle? $\Delta \mathrm{A}_{K \pi}=\mathrm{A}_{\mathrm{CP}}\left(K^{+} \pi^{0}\right)-\mathrm{A}_{\mathrm{CP}}\left(K^{+} \pi^{-}\right) \neq 0$
- Polarization in $B \rightarrow V V, T V$
- Search for enhancement in $\mathrm{b} \rightarrow \mathrm{s}, \mathrm{d}$ penguins
- Baryonic decays

B factories

$>1 \mathbf{a b}^{-1}$ On resonance
$Y(5 \mathrm{~S}): 121 \mathrm{fb}^{-1}$ $Y(4 \mathrm{~S}): 711 \mathrm{fb}^{-1}$ $Y(3 \mathrm{~S}): 3 \mathrm{fb}^{-1}$ $Y(2 S): 24 \mathrm{fb}^{-1}$ $Y(1 \mathrm{~S}): 6 \mathrm{fb}^{-1}$ Off reson./scan : $\sim 100 \mathrm{fb}^{-}$
$\sim 550 \mathrm{fb}^{-1}$ On resonance:
$Y(4 \mathrm{~S}): 433 \mathrm{fb}^{-1}$
$Y(3 \mathrm{~S}): 30 \mathrm{fb}^{-1}$ $Y(2 \mathrm{~S}): 14 \mathrm{fb}^{-1}$ Off resonance: $\sim 54 \mathrm{fb}^{-1}$
1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

- Together B factories have collected $>1.2 \times 10^{9} B \bar{B}$ pairs.

Separate signal from background

- Major background comes from continuum $e^{+} e^{-} \rightarrow q \bar{q}, q=u, d, s, c$

Kinematics of fully reconstructed B

Excellent K / π separation power

These variables are often combined to form a grand likelihood function to increase sensitivity.

Event shape to suppress continuum

Build Fisher, NN, or other classifiers to separate background

Inclusive $B \rightarrow K^{ \pm, 0}$, $\pi^{ \pm}$beyond charm threshold

- Charmless decays have large contributions from penguin diagrams.
- New physics entering the loop could enhance the branching fraction.

- e.g., Randall-Sundrum warped top-condensation model radion field postulation
$\left(b \rightarrow s \phi \rightarrow s g^{*}\right)$ enhances charmless BF by an order of magnitude.
- Strategy: fully reconstruct one B meson through $B \rightarrow D^{(*)} X$ and measure K or π with momentum beyond $b \rightarrow c$ kinematic threshold in recoiled B.
- SM prediction of partial $\mathrm{BF} \sim 10^{-4}$.
- A significant inclusive signal has not been observed in previous experiments.

Analysis

- $2 \times 10^{6} \mathrm{~B} \underline{B}$ events reconstructed, from $383 \times 10^{6} B \underline{B}$ pairs.
- High p^{*} (momentum at recoiled frame) K and π are selected.
- Veto $D^{+}, D^{0}, D s$ if they can be reconstructed.
- PDF variables: mes, Fisher, p* spectrum
 including various charm components.

First fit $\mathrm{p}^{*>} 1.8$, then the signal region $\mathrm{p}^{*}>2.34$ (2.36)

Inclusive $B \rightarrow K^{ \pm, 0}, \pi^{ \pm}$results

- $\mathcal{B}\left(B \rightarrow K^{+} X, p^{*}>2.34 \mathrm{GeV}\right)=(1.2 \pm 0.3 \pm 0.4) \times 10^{-4}, \quad\left(<1.9 \times 10^{-4} @ 90 \% \mathrm{C} . \mathrm{L}.\right) 2.9 \sigma$

$$
\begin{array}{rr}
\mathcal{B}\left(B \rightarrow K^{0} X, p^{*}>2.34 \mathrm{GeV}\right)=(1.9 \pm 0.5 \pm 0.5) \times 10^{-4}, & \left(<2.9 \times 10^{-4} @ 90 \% \text { C.L. }\right) 3.8 \sigma \\
\mathcal{B}\left(B \rightarrow \pi^{+} X, p^{*}>2.34 \mathrm{GeV}\right)=(3.7 \pm 0.5 \pm 0.6) \times 10^{-4}, & 6.7 \sigma
\end{array}
$$

[PRD-RC 83, 031103 (2011)]

- In agreement with the Standard Model
- Exclude large enhancement from New Physics.

Polarization in $B \rightarrow$ Vector-Vector

- Naive expectation: $\mathrm{f}_{\mathrm{L}} \sim 1 . B \rightarrow \rho \rho$ have $\mathrm{f}_{\mathrm{L}}>90 \%$. However, $\mathrm{f}_{\mathrm{L}} \sim 50 \%$ for $B \rightarrow \phi K^{*}$, and many other $b \rightarrow s$ penguin $V V$ states.
- $\underline{B^{+} \rightarrow \rho^{0} K^{*+}}$ had not been observed yet. Expect: BF~ $(5 \pm 1) \times 10^{-6}$.

Polarizations of Charmless Decays

$\left|A_{00}\right|^{2} \gg\left|A_{++}\right|^{2} \gg\left|A_{--}\right|^{2}$

$B^{+} \rightarrow \rho^{0} K^{*+}, f_{0} K^{*+}$

- Reconstruct: $B^{+} \rightarrow \rho K^{*+}, f_{0}(980) K^{*+}$, with $\rho, f_{0} \rightarrow \pi^{+} \pi^{-}, K^{*+} \rightarrow K^{+} \pi^{0}, K_{s}^{0} \pi^{+}$
- Measure: branching fraction, polarization $\left(\rho \mathrm{K}^{*}\right)$, direct CPV.
- Decay rate of $B \rightarrow \rho K^{*} \propto \frac{1-f_{L}}{4} \sin ^{2} \theta_{K^{*}+} \sin ^{2} \theta_{\rho^{0}}+f_{L} \cos ^{2} \theta_{K^{*}+} \cos ^{2} \theta_{\rho^{0}}$
- after integrating out the angle between decay planes of two vectors.
- Seven variables in PDF: $\mathcal{P}_{j}\left(x_{i}\right)=\mathcal{P}_{j}\left(m_{E S_{i}}\right) \cdot \mathcal{P}_{j}\left(\Delta E_{i}\right) \cdot \mathcal{P}_{j}\left(N N_{i}\right)$

$$
\cdot \mathcal{P}_{j}\left(M_{\pi^{+} \pi^{-}{ }_{i}}\right) \cdot \mathcal{P}_{j}\left(M_{K \pi i}\right) \cdot \mathcal{P}_{j}\left(\cos \theta_{\pi^{+} \pi^{-}{ }_{i}}\right) \cdot \mathcal{P}_{j}\left(\cos \theta_{K \pi i}\right)
$$

- 12 background components including continuum, various combination of combinatorials, higher resonances, η^{\prime}, and nonresonant S-wave contributions.

Projection plots of $B^{+} \rightarrow \rho^{0} K^{*+}, f 0 K^{*+}$

Green: ρK^{*}
magenta : $f_{0} K^{*}$
$K s \pi^{+}$

$$
\begin{array}{cc}
B^{+} \rightarrow \rho^{0} K^{*+} & \text { signal yield } \\
K^{*+} \rightarrow K_{S}^{0} \pi^{+} & 85 \pm 24
\end{array}
$$

$$
B^{+} \rightarrow f_{0}(980) K^{*+}
$$

$$
K^{*+} \rightarrow K_{S}^{0} \pi^{+} \quad 69 \pm 14
$$

$K^{+} \pi^{0}$

signal yield
$K^{*+} \rightarrow K^{+} \pi^{0} \quad 67 \pm 31$
$K^{*+} \rightarrow K^{+} \pi^{0} \quad 91 \pm 20$

$B^{+} \rightarrow \rho^{0} K^{+C}, f_{6} K^{+4}$ resulls

- Observation of $B^{+} \rightarrow \rho^{0} K^{*+}$ decay: $\mathrm{BF}\left(B^{+} \rightarrow \rho^{0} K^{*+}\right)=(4.6 \pm 1.0 \pm 0.4) \times 10^{-6}$
- Improved $\mathrm{BF}\left(B^{+} \rightarrow f_{0} K^{*+}\right) \times \operatorname{BF}\left(f_{0} \rightarrow \pi^{+} \pi^{-}\right)=(4.2 \pm 0.6 \pm 0.3) \times 10^{-6}$
- $\mathrm{f}_{\mathrm{L}}\left(B^{+} \rightarrow \rho^{0} K^{*+}\right)=0.78 \pm 0.12 \pm 0.03$
- consistent with large f_{L}; the other two $K^{*} \rho$ modes are further away.

BABAR
Data set: $467 \times 10^{6} B \bar{B}$ pairs. Accepted by PRD-RC

Mode	$\mathcal{B}\left(\times 10^{-6}\right)$	f_{L}	$\mathcal{A}_{C P}$
$B^{+} \rightarrow \rho^{0} K^{*+}$	$4.6 \pm 1.0 \pm 0.4$	$0.78 \pm 0.12 \pm 0.03$	$0.31 \pm 0.13 \pm 0.03$
$K^{*+} \rightarrow K_{S}^{0} \pi^{+}$	$4.6 \pm 1.2 \pm 0.5$	$0.74 \pm 0.13 \pm 0.03$	$0.25 \pm 0.14 \pm 0.03$
$K^{*+} \rightarrow K^{+} \pi^{0}$	$4.4 \pm 2.0 \pm 0.5$	$0.94 \pm 0.27 \pm 0.03$	$0.59 \pm 0.31 \pm 0.03$
$B^{+} \rightarrow f_{0}(980) K^{*+}$	$4.2 \pm 0.6 \pm 0.3$	-	$-0.15 \pm 0.12 \pm 0.03$
$K^{*+} \rightarrow K_{S}^{0} \pi^{+}$	$3.6 \pm 0.7 \pm 0.3$	-	$-0.34 \pm 0.16 \pm 0.03$
$K^{*+} \rightarrow K^{+} \pi^{0}$	$5.2 \pm 1.0 \pm 0.3$	-	$0.14 \pm 0.12 \pm 0.03$

Previous results: $\quad 232 \mathrm{M} \mathrm{BB}$

$$
\begin{aligned}
& B\left(\mathrm{~B}^{+} \rightarrow \rho^{0} \mathrm{~K}^{*+}\right)<6.1 \times 10^{-6}(@ 90 \% \mathrm{CL}) \\
& B\left(\mathrm{~B}^{+} \rightarrow \mathrm{f}_{0}(980) \mathrm{K}^{*+}\right)=(5.2 \pm 1.2 \pm 0.5) 10^{-6} \\
& \text { PRL 97, } 201801(2006)
\end{aligned}
$$

B^{0} $\rightarrow K^{* 0} \bar{K}^{* 0}$ motivation

- $B \rightarrow K^{* 0} \bar{K}^{* 0}$ is a pure $b \rightarrow d$ penguin, and should have the same f_{L} as $b \rightarrow s$ under U-spin symmetry.
- Possible explanations in the SM for small f_{L} : large f_{T} contributions from penguin annihilation or rescattering.
- If a large f_{T} is observed, a time-dependent $C P$ asymmetry analysis to measure phase difference between $A_{T}(b \rightarrow d)$ and $A_{T}(\bar{b} \rightarrow \bar{d})$ could distinguish the two possible contributions which have different weak phases.

The rescattering diagrams.

Datta et al, PRD74, 034015 (2007)
The penguin annihilation diagrams.

B^{0}
 $\rightarrow K^{* 0} \bar{K}^{* 0}$
 $K^{* 0} K^{* 0}$
 results

- Fit PDF: $m_{\mathrm{ES}}, \Delta E, m_{K_{1}^{*}}, m_{K_{2}^{*}}$, (and Fisher, K^{*} helicity angles: (BABAR)).
- Belle fits $K^{*} K^{*}$ and higher/non-resonances at once; BABARfits $K^{*} K^{*}$ and subtract other contributions extrapolating from fit to higher resonance.

	$\mathcal{B}\left(K^{* 0} \overline{K^{* 0}}\right)$	$f_{L}\left(K^{* 0} \bar{K}^{* 0}\right)$	$\mathcal{B}\left(K^{* 0} K^{* 0}\right)$	$N_{B \bar{B}}\left[10^{6}\right]$	Ref.
BABAR	$1.28_{-0.30}^{+0.35} \pm 0.11$	$0.80_{-0.12}^{+0.10} \pm 0.06$	<0.41	383	PRL100, 081801 (2008)
Belle	$0.26_{-0.29-0.08}^{+0.33}(<0.8)$	-	<0.2	657	PRD81, 071101(R) (2010)
BF unit: $10^{-6} ;$ Upper limit at 90% C.L.					

$\sim 2 \sigma$ discrepancy in $\mathcal{B}\left(K^{* 0} \bar{K}^{* 0}\right)$ between the two measurements.

Charmless 3-body

- Search new physics in $b \rightarrow s$ or $b \rightarrow d$ penguin dominated processes.
- Typical analysis involves Dalitz plot analysis, some with time dependence, and some need to utilize isospin/SU(3) symmetry.
- Interferences among resonances allow CKM angles and strong phases measurement.
+ Eg., $\alpha: B \rightarrow \pi \pi \pi ; \gamma: B \rightarrow K \pi \pi ; \beta: B \rightarrow K_{S} K_{S} K_{S}$
- Search for direct CPV in components.
- Other structure in Dalitz plot.
$\mathcal{B}(B \rightarrow(3$ body modes $))$

$B \rightarrow \phi \phi K$ analysis

- Possible new physics in $b \rightarrow s$ penguin. Interference with $B \rightarrow \eta_{c} K$ at $\phi \phi$ mass near η_{c} could produce large CPV.

- Non-zero direct CP asymmetry would be a smoking gun for New Physics.
- Could be as large as 40\%! (Haizumi, Phys. Lett. B 583, 285 (2004)).
- Study spin structure of $\phi \phi$ system. Only $J^{P}=0^{-}$component of 3-body B decay interfere with η_{c}.

Peaking background

- Peaking $B \rightarrow 5 K$ background occupy different zones on $m_{\phi 1}-m_{\phi 2}$ plane.
- Fit yields by zone and use cross-zone contributions determined by MC to estimate peaking background.

Simulation

Fitting yields

- Maximum likelihood fit to $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}$, Fisher, $\mathrm{m}_{\phi 1}, \mathrm{~m}_{\phi 2}[B A B A R]$.
- Cut on a likelihood of Fisher, $\cos \theta_{\mathrm{B}}$, and $\Delta \mathrm{z}$, and flavor tagging on the recoiled B, and then fit to $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}$ [Belle].

$=178 \pm 15$

Branching fraction and A_{CP}

Partial BF: $m_{\phi \phi}<2.85 \mathrm{GeV}$

$$
\begin{array}{ccc}
\left(10^{-6}\right) & \mathcal{B}\left(B^{+} \rightarrow \phi \phi K^{+}\right) & \mathcal{B}\left(B^{0} \rightarrow \phi \phi K^{0}\right) \\
\hline \text { BABAR } & 5.6 \pm 0.5 \pm 0.3 & 4.5 \pm 0.8 \pm 0.3 \\
\text { Belle } & 3.2_{-0.5}^{+0.6} \pm 0.3 & 2.3_{-0.7}^{+1.0} \pm 0.2
\end{array}
$$

$A_{C P}\left(\phi \phi K^{+}\right)$below and within η_{c} region, consistent with zero.

$m_{\phi \phi}$	$<2.85 \mathrm{GeV}$	$2.94-2.98 \mathrm{GeV}$	$2.98-3.02 \mathrm{GeV}$
BABAR	$-0.10 \pm 0.08 \pm 0.02$	$-0.10 \pm 0.15 \pm 0.02$	$-0.08 \pm 0.14 \pm 0.02$
Belle	$0.01_{-0.16}^{+0.19} \pm 0.02$	$0.15_{-0.17}^{+0.16} \pm 0.02$	

Angular study

- Project $J^{P}=0^{-}$component by weighting $\mathrm{m}_{\phi \phi}$ by the product of Legendre polynomial and spherical harmonic
$P_{2}\left(\cos \theta_{1}\right) \operatorname{Re}\left[Y_{2}^{2}\left(\theta_{2}, \chi\right)\right]=\frac{25}{4}\left\{3 \cos ^{2}\left(\theta_{1}\right)-1\right\} \sin ^{2}\left(\theta_{2}\right) \cos (2 \chi)$

- η_{c} region is consistent with $J^{P}=0^{-}$.
- Below η_{c} region is not consistent with $J^{P}=0^{-}$. but consistent with $J^{P}=0^{+}$.

BABAR

Summary

- Very rich program in hadronic charmless B decays.
- More physics still to come after shutdowns of B factories.
- Inclusive $B \rightarrow K^{ \pm, 0}$, $\pi^{ \pm}$beyond charm threshold:
- Consistent with the SM, rule out large NP contribution to $b \rightarrow s g^{*}$.
- Observation of $B^{+} \rightarrow \rho^{0} K^{*+}$ and $B^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$ decays and measurement of their polarizations:
- more pieces towards understanding $B \rightarrow V V$ polarization puzzle.
- BF, A_{CP}, and angular analysis of $B \rightarrow \phi \phi K$:
- Clear signal, but A_{CP} consistent with zero. No large NP in the penguin.

