Chirally enhanced self-energies in the MSSM

Lestrencontre dephysique

 de YavalléeEffective Higgs Vertices in the generic MSSM.
Andreas Crivellin, arXiv: 1012.4840 [hep-ph]
Radiative Flavor-Violation in the MSSM Andreas Crivellin, Lars Hofer, Dominik Scherer and Urich Nierste, arXiv:1103.XXXX [hep-ph]

Outline:

- The SUSY flavor-problem
- Self-energies and the origin of chiral enhancement
- Renormalization and $\tan (\beta)$ resummation.
- Flavor-changing neutral Higgs vertices
- Radiative flavor-violation in the MSSM

Quark masses

- Top quark is very heavy. $\mathrm{m}_{\mathrm{t}} \approx \mathrm{v}$
- Bottom quark rather light, but Y^{b} can be big at large $\tan (\beta)$
- All other quark masses are very small
sensitive to radiative corrections

CKM matrix

- CKM matrix is the only source of flavor and CP violation in the SM.
- No tree-level FCNCs.

$$
\mathrm{V}_{\text {СКМ }}=
$$

- Off-diagonal CKM elements are small

Flavor-violation

SUSY flavor (CP) problem

- The squark mass matrices are not necessarily diagonal (and real) in the same basis as the quark mass matrices.
- Especially the trilinear A-terms can induce dangerously large flavor-mixing (and complex phases) since they don't necessarily posses the suppression of the SM.
- The MSSM possesses two Higgs-doublets: Flavourchanging charged and (loop-induced) neutral Higgs interactions.
- Possible solutions:
- MFV D'Ambrosio, Giudice, Isidori, Strumia hep-ph/0207036
- effective SUSY Barbieri et at hep-ph/10110730
- Radiative flavour violation

Squark mass matrix
 $$
M_{\tilde{\mathrm{q}}}^{2}=\left(\begin{array}{cc} M_{\mathrm{LL}}^{\tilde{\mathrm{q}} 2} & \Delta^{\tilde{\mathrm{q}} \mathrm{LR}} \\ \Delta^{\tilde{\mathrm{q} L R} \dagger} & \mathrm{M}_{\mathrm{RR}}^{\tilde{\mathrm{q}} 2} \end{array}\right)
$$

hermitian: $\longrightarrow \mathrm{W}^{\tilde{\widetilde{q}} \dagger} \mathrm{M}_{\tilde{\mathrm{q}}}^{2} \mathrm{~W}^{\tilde{\mathrm{q}}}=\mathrm{M}_{\tilde{\mathrm{q}}}^{2(\mathrm{D})}$
$\mathrm{M}_{\mathrm{LL}, \mathrm{RR}}^{\tilde{\tilde{q}^{2}}}$ involves only bilinear terms (in the decoupling limit)

The chirality-changing elements are proportional to a vev
$\Delta_{\mathrm{ij}}^{\mathrm{dLR}}=-\mathrm{V}_{\mathrm{d}}\left(\mu \tan (\beta) \mathrm{Y}_{\mathrm{i}}^{\mathrm{d}(0)} \delta_{\mathrm{ij}}+\mathrm{A}_{\mathrm{ij}}^{\mathrm{d}}\right)$
$\Delta_{\mathrm{ij}}^{\mathrm{uLR}}=-\mathrm{v}_{\mathrm{u}}\left(\mu \cot (\beta) \mathrm{Y}_{\mathrm{i}}^{\mathrm{u}(0)} \delta_{\mathrm{ij}}+\mathrm{A}_{\mathrm{ij}}^{\mathrm{u}}\right)$

$$
\tan (\beta)=\frac{v_{u}}{v_{d}}
$$

Mass insertion approximation

(L.J. Hall, V.A. Kostelecky and S. Raby, Nucl. Phys. B 267 (1986) 415.)

- Useful to visualize flavor-changes in the squark sector
$\Delta_{\mathrm{ij}}^{\mathrm{q}} \mathrm{AB}$ off-diagonal element of the squark mass matrix
- $\mathrm{q}=\mathrm{u}, \mathrm{d}$
- i, j flavor indices 1,2,3
- A, B chiralitys L,R

SQCD self-energy:

Finite and proportional to at least one power of $\Delta_{f i}^{q}{ }^{\text {LR }}$

$$
\sum_{\mathrm{fi}}^{q \mathrm{LR}}=\alpha_{\mathrm{s}} \frac{2}{3 \pi} \mathrm{~m}_{\overline{\mathrm{g}}} \mathrm{~W}_{\mathrm{fs}}^{q} \mathrm{~W}_{\mathrm{js}}^{q^{*}} \Delta_{\mathrm{j} 1}^{q \mathrm{LR}} W_{\mathrm{lt}}^{q} \mathrm{~W}_{\mathrm{it}}^{q^{*}} C_{0}\left(\mathrm{~m}_{\tilde{\mathrm{g}}}{ }^{2}, \mathrm{~m}_{\overline{\mathrm{q}}_{\mathrm{s}}}^{2}, \mathrm{~m}_{\overline{\mathrm{q}}_{\mathrm{t}}}^{2}\right)
$$

decoupling limit

Decomposition of the self-energy

Decompose the self-energy

$$
\Sigma_{\mathrm{if}}^{\mathrm{dLR}}=\Sigma_{\mathrm{iiA}}^{\mathrm{dLR}}+\sum_{\mathrm{ii} \mathrm{Y}}^{\mathrm{dLR}}
$$

into a holomorphic part proportional to an A-term
$\Sigma_{f i A}^{d L R}=-v_{d} \alpha_{\mathrm{s}} \frac{2}{3 \pi} \mathrm{~m}_{\tilde{\mathrm{g}}} \mathrm{W}_{\mathrm{fs}}^{\mathrm{d}} \mathrm{W}_{\mathrm{js}}^{\mathrm{d}^{\mathrm{t}}} \mathrm{A}_{\mathrm{jl}}^{\mathrm{q}} \mathrm{W}_{\mathrm{lt}}^{\mathrm{d}} \mathrm{W}_{\mathrm{it}}^{\mathrm{d}^{\mathrm{t}}} \mathrm{C}_{0}\left(\mathrm{~m}_{\tilde{\mathrm{g}}}{ }^{2}, \mathrm{~m}_{\tilde{\mathrm{q}}_{\mathrm{s}}}^{2}, \mathrm{~m}_{\tilde{\mathrm{q}}_{\mathrm{t}}}^{2}\right)$
non-holomorphic part proportional to a Yukawa
$\sum_{\mathrm{fi}}^{\mathrm{d} Y}{ }^{L R}=-\mathrm{v}_{\mathrm{u}} \mu \alpha_{\mathrm{s}} \frac{2}{3 \pi} \mathrm{~m}_{\tilde{\mathrm{g}}} \mathrm{W}_{\mathrm{fs}}^{\mathrm{d}} \mathrm{W}_{\mathrm{js}}^{\mathrm{d}^{*}} Y^{\mathrm{d}_{j}} \mathrm{~W}_{\mathrm{jt}}^{\mathrm{d}} \mathrm{W}_{\mathrm{it}}^{\mathrm{d}^{*}} \mathrm{C}_{0}\left(\mathrm{~m}_{\tilde{\mathrm{g}}}{ }^{2}, \mathrm{~m}_{\overline{\mathrm{q}}_{\mathrm{s}}}^{2}, \mathrm{~m}_{\tilde{\mathrm{q}}_{\mathrm{t}}}^{2}\right)$
Define dimensionless quantity $\varepsilon_{i}^{d}=\frac{\sum_{i i \mathrm{Y}}^{\mathrm{dLR}}}{\mathrm{v}_{\mathrm{u}} \mathrm{Y}^{\mathrm{d}_{\mathrm{i}}}}$
which is dimensionless and independent of a Yukawa coupling

Renormalization I

- All corrections are finite; counter-term not necessary.
- Minimal renormalization scheme is simplest.

Mass renormalization

$$
\begin{aligned}
\mathrm{m}_{\mathrm{d}_{\mathrm{i}}} & =\mathrm{v}_{\mathrm{d}} \mathrm{Y}^{\mathrm{d}_{\mathrm{i}}(0)}+\sum_{\mathrm{ii}}^{\mathrm{dLR}} \\
& =\mathrm{v}_{\mathrm{d}} \mathrm{Y}^{\mathrm{d}_{\mathrm{i}}(0)}+\sum_{\mathrm{ii}}^{\mathrm{q} \mathrm{LR}}+\mathrm{v}_{\mathrm{d}} \tan (\beta) \mathrm{Y}_{\mathrm{i}(0)}^{\mathrm{d}_{\mathrm{i}}(0)} \varepsilon_{\mathrm{i}}^{\mathrm{d}} \\
& \mathrm{Y}^{\mathrm{d}_{\mathrm{i}}(0)}=\frac{\mathrm{m}_{\mathrm{d}_{\mathrm{i}}}-\sum_{\mathrm{ii} \mathrm{~A}}^{\mathrm{qLR}}}{\mathrm{v}_{\mathrm{d}}\left(1+\tan (\beta) \varepsilon_{\mathrm{i}}^{\mathrm{d}}\right)}
\end{aligned}
$$

- $\tan (\beta)$ is automatically resummed to all orders

Renormalization II

- Corrections to the CKM matrix:

$$
\begin{gathered}
V_{f i}^{C K M}=U_{j f}^{u L^{*}} V_{j k}^{C K M(0)} U_{k i}^{d L} \\
1-\frac{\left|\Sigma_{12}^{\mathrm{qLR}}\right|^{2}}{2 \mathrm{~m}_{\mathrm{q}_{2}}^{2}} \\
\mathrm{U}^{\mathrm{qL}}=\left(\begin{array}{ccc}
\frac{1}{\mathrm{~m}_{\mathrm{q}_{2}}} \Sigma_{12}^{\mathrm{qLR}} & \frac{1}{\mathrm{~m}_{\mathrm{q}_{3}}} \Sigma_{13}^{\mathrm{qLR}} \\
\frac{-1}{\mathrm{~m}_{\mathrm{q}_{2}}} \Sigma_{21}^{\mathrm{q} R \mathrm{LL}} & 1-\frac{\left|\Sigma_{12}^{\mathrm{qLR}}\right|^{2}}{2 \mathrm{~m}_{\mathrm{q}_{2}}^{2}} & \frac{1}{\mathrm{~m}_{\mathrm{q}_{3}}} \Sigma_{23}^{\mathrm{qLR}} \\
\frac{-1}{\mathrm{~m}_{\mathrm{q}_{3}}} \Sigma_{31}^{\mathrm{q}^{\mathrm{qRL}}}+\frac{\Sigma_{32}^{\mathrm{qRL}} \Sigma_{21}^{\mathrm{qRL}}}{\mathrm{~m}_{\mathrm{q}_{2}} \mathrm{~m}_{\mathrm{q}_{3}}} & \begin{array}{l}
\frac{-1}{\mathrm{~m}_{\mathrm{q}_{3}}} \Sigma_{32}^{\mathrm{qRL}}
\end{array} & \begin{array}{l}
\text { important two-loop } \\
\text { corrections } \\
\text { A.C. Jennifer Girrbach } 2010
\end{array}
\end{array}\right)
\end{gathered}
$$

Chiral enhancement

$$
\Sigma_{\mathrm{fi}}^{\mathrm{dLR}} \approx \frac{1}{50} \frac{\Delta_{\mathrm{fi}}^{\mathrm{LLR}}}{\mathrm{M}_{\mathrm{SUSY}}}=\frac{-\mathrm{v}_{\mathrm{d}}}{50}\left(\tan (\beta) \mathrm{Y}_{\mathrm{i}}^{\mathrm{d}(0)} \delta_{\mathrm{ij}}+\frac{\mathrm{A}_{\mathrm{ij}}^{\mathrm{d}}}{\mathrm{M}_{\mathrm{SUSY}}}\right)
$$

- For the bottom quark only $\Sigma_{33 \mathrm{Y}}^{\mathrm{LLR}}=\frac{-1}{50} \mathrm{v}_{\mathrm{d}} \tan (\beta) \mathrm{Y}^{\mathrm{b}(0)} \square \mathrm{m}_{\mathrm{b}}$
the term proportional to $\tan (\beta)$ is important.
$\Longrightarrow \tan (\beta)$ enhancement Blazek, Raby, Pokorski, hep-ph/9504364
- For the light quarks also the part proportional to the A-term is relevant.

$$
\begin{aligned}
& \Sigma_{22 \mathrm{~A}}^{\mathrm{dLR}}=\mathrm{O}(1) \square \mathrm{A}_{22}^{\mathrm{d}} \approx \mathrm{M}_{\mathrm{SUSY}} \\
& \Sigma_{11 \mathrm{~A}}^{\mathrm{dR}}=\mathrm{O}(1) \square \mathrm{A}_{11}^{\mathrm{d}} \approx \frac{1}{50} \mathrm{M}_{\mathrm{SUSY}}
\end{aligned}
$$

Flavour-changing corrections

$$
\begin{aligned}
& \frac{\sum_{\mathrm{i}}^{\mathrm{qLR}}}{\mathrm{~m}_{\text {qmate }}} \square \mathrm{V}_{\mathrm{i}}^{\mathrm{CKM}} \\
& \mathrm{~V}_{\mathrm{ch}}^{\mathrm{cKM}}: \mathrm{A}_{\mathrm{A}_{3}^{q}} \approx \mathrm{M}_{\text {susy }} \\
& \mathrm{V}_{\mathrm{vb}}^{\mathrm{cKM}}: \mathrm{A}_{13}^{q} \approx \mathrm{M}_{\text {susy }} \times 10^{-1} \\
& \mathrm{~V}_{\mathrm{ts}}^{\mathrm{ckM}}: \mathrm{A}_{12}^{9} \approx \mathrm{M}_{\text {susy }} \times 10^{-1}
\end{aligned}
$$

- Flavor-changing A-term can easily lead to order one correction.
A.C., Ulrich Nierste, hep-ph/08101613

Higgs vertices in the EFT I

new

Higgs vertices in the EFT II

$$
L_{\mathrm{Y}}^{\mathrm{eff}}=\overline{\mathrm{Q}}_{\mathrm{f} L}^{\mathrm{a}}\left(\left(\mathrm{Y}_{\mathrm{i}}^{\mathrm{d}} \delta_{\mathrm{fi}}+\mathrm{E}_{\mathrm{fi}}^{\mathrm{d}}\right) \varepsilon_{\mathrm{ba}} \mathrm{H}_{\mathrm{d}}^{\mathrm{b}}+\mathrm{E}_{\mathrm{fi}}^{\prime \mathrm{d}} \mathrm{H}_{\mathrm{u}}^{\mathrm{a}^{*}}\right) \mathrm{d}_{\mathrm{iR}}
$$

- Non-holomorphic corrections $\mathrm{E}_{\mathrm{fi}}^{\prime \mathrm{d}}=\frac{\sum_{\mathrm{fi}}^{\mathrm{Li}}}{\mathrm{v}_{\mathrm{u}}}$
- Holomorphic corrections $\mathrm{E}_{\mathrm{fi}}^{\mathrm{d}}=\frac{\sum_{\mathrm{fiA}}^{\mathrm{dLR}}}{\mathrm{V}_{\mathrm{u}}}$
- The quark mass matrix $\mathrm{m}_{\mathrm{fi}}^{\mathrm{d}}=\mathrm{v}_{\mathrm{d}}\left(\mathrm{Y}^{\mathrm{d}} \delta_{\mathrm{fi}}+\mathrm{E}_{\mathrm{fi}}^{\mathrm{d}}\right)+\mathrm{v}_{\mathrm{u}} \mathrm{E}_{\mathrm{fi}}^{\mathrm{d}}$ is no longer diagonal in the same basis as the Yukawa coupling

Flavour-changing neutral Higgs couplings

Effective Yukawa couplings

- Final result:

$$
\begin{aligned}
& Y_{i j}^{d e f f}=\frac{1}{V_{d}}\left(m_{d_{i}} \delta_{i j}-\tilde{\Sigma}_{\mathrm{ij} \mathrm{Y}}^{\mathrm{dLR}}\right)
\end{aligned}
$$

Diagrammatic explanation in the full theory:

Higgs vertices in the full theory

- Cancellation incomplete since $v_{d} Y^{d_{3}} \neq m_{d_{3}}$ Part proportional to $\Sigma_{33 Y}^{d L R}$ is left over.
\square A-terms generate flavor-changing Higgs couplings

Radiative flavor-violation

SU(2) ${ }^{3}$ flavor-symmetry in the MSSM superpotential:

- CKM matrix is the unit matrix.
- Only the third generation Yukawa coupling is different from zero.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CKM}}^{(0)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \mathrm{Y}^{\mathrm{q}}=\frac{1}{\mathrm{~V}_{\mathrm{q}}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \mathrm{~m}_{\mathrm{q}_{3}}
\end{array}\right)
\end{aligned}
$$

All other elements are generated radiatively using the trilinear A-terms!

Features of the model

- Additional flavor symmetries in the superpotential.
- Explains small masses and mixing angles via a loopsuppression.
- Deviations from MFV if the third generation is involved.
- Solves the SUSY CP problem via a mandatory phase alignment. (Phase of μ enters only at two loops)
Borzumati, Farrar, Polonsky, Thomas 1999.
- The SUSY flavor problem reduces to the elements $\delta_{32}^{q L R}, \delta_{31}^{q L R}$
- Can explain the B_{s} mixing phase

CKM generation in the down-sector:

$$
\begin{aligned}
& \Sigma_{13}^{\mathrm{dLR}} \stackrel{!}{=} \mathrm{m}_{\mathrm{b}} \mathrm{~V}_{\mathrm{ub}} \\
& \Sigma_{23}^{\mathrm{dLR}} \stackrel{ }{=} \mathrm{m}_{\mathrm{b}} \mathrm{~V}_{\mathrm{cb}}
\end{aligned}
$$

- Constraints from $\mathrm{b} \rightarrow \mathrm{s} \gamma$. Chirally enhanced corrections must be taken into account.
A.C., Ulrich Nierste 2009
- $\delta_{31}^{\mathrm{dLR}}, \delta_{32}^{\mathrm{dLR}}$ less constrained since they contribute to C7',C8'.
- $\delta_{32}^{\mathrm{dLR}}$ can explain the CP phase in B_{s} mixing. (not possible in MFV)

$\square \mathrm{m}_{\mathrm{b}} \mu \tan (\beta)=0.12 \mathrm{TeV}^{2}$
$m_{b} \mu \tan (\beta)=0 \mathrm{TeV}^{2}$
$\mathrm{m}_{\mathrm{b}} \mu \tan (\beta)=0.12 \mathrm{TeV}^{2}$

Higgs effects: $B_{s} \rightarrow \mu \mu$

- Constructive contribution due to

$$
\Sigma_{23}^{d L R}=m_{b} V_{c b}
$$

Higgs effects: B_{s} mixing

- Contribution only if
$V_{23}^{R}=\frac{\sum_{23}^{d R L}}{m_{b}} \neq 0$
due to Pecci-Quinn symmetry
\square

$$
\begin{aligned}
& \tan (\beta)=11 \\
& \tan (\beta)=14
\end{aligned}
$$

CKM generation in the up-sector:

- Constraints from Kaon mixing.
- $\delta_{31}^{u \operatorname{LR}}, \delta_{32}^{u \operatorname{LR}}$ unconstrained from FCNC processes.
- $\delta_{31}^{u L R}$ can induce a sizable right-handed W coupling.

A.C. 2009

$$
\mathrm{M}_{2}=200 \mathrm{GeV}
$$

$$
\mathrm{M}_{2}=400 \mathrm{GeV}
$$

$$
\mathrm{M}_{2}=400 \mathrm{GeV}
$$

$$
\mathrm{M}_{2}=800 \mathrm{GeV}
$$

- Effects in $\mathrm{K} \rightarrow \mathrm{TVV}$
- Verifiable predictions for NA62

Conclusions

- The MSSM possesses many new sources of flavor and CP violation
- Self-energies can be chirally enhanced and of order one.
- Flavour-conserving non-holomorphic corrections induce flavour-changing neutral Higgs couplings proportional to Aterms.
\longrightarrow Self-energies have physical effects.
- Radiative flavor-violation in the MSSM is a interesting solution to the SUSY CP and SUSY flavor problem.
- Constraints from $\mathrm{b} \rightarrow \mathrm{sy}$ and Kaon mixing are satisfied for SUSY masses O(1TeV).
- Large effects in $\mathrm{K} \rightarrow$ ivv are possible.
- B_{s} mixing phase can be explained.

