New Physics Searches in Flavour Physics a theoretical (over)view

David M. Straub Scuola Normale Superiore, Pisa

> March 2, 2011 Rencontres de Physique de la Vallée d'Aoste La Thuile

Probing new physics through flavour

Flavour physics allows to probe new physics through virtual contributions to low energy precision observables:

Bounds on new physics flavour structure

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i^{(d)}}{\Lambda^{4-d}} O_i^{(d)}$$

Operator	Bounds on c_i ($\Lambda = 1$ TeV)		Observables
	Re	lm	
$(\bar{s}_L \gamma^\mu d_L)^2$	$9 imes 10^{-7}$	$3 imes 10^{-9}$	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$7 imes10^{-9}$	3×10^{-11}	Δm_K ; ϵ_K
$(ar{c}_L \gamma^\mu u_L)^2$	$6 imes 10^{-7}$	$1 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6 imes 10^{-8}$	$1 imes 10^{-8}$	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	$3 imes 10^{-6}$	$1 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_R d_L)(ar{b}_L d_R)$	$6 imes 10^{-7}$	$2 imes 10^{-7}$	$\Delta m_{B_d}; \; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	$8 imes 10^{-5}$		Δm_{B_s}
$(ar{b}_R s_L)(ar{b}_L s_R)$	$1 imes 10^{-5}$		Δm_{B_s}

[Isidori, Nir, Perez 1002.0900]

The flavour puzzle(s)

The NP flavour puzzle: the flavour structure of TeV new physics must be highly **non-generic**.

The flavour puzzle(s)

- The NP flavour puzzle: the flavour structure of TeV new physics must be highly **non-generic**.
 - The SM flavour puzzle: even the flavour structure of the Standard Model is highly non-generic!

The flavour puzzle(s)

- The NP flavour puzzle: the flavour structure of TeV new physics must be highly **non-generic**.
 - The SM flavour puzzle: even the flavour structure of the Standard Model is highly non-generic!

1. Are there sources of flavour breaking beyond the ones in the SM or not (= Minimal Flavour Violation)?

2. Are there sources of CP violation beyond the CKM phase?

Outline

1. Introduction

- 2. Selected highlights in the early LHC era
 - $B_{s,d} \rightarrow \mu^+ \mu^-$
 - CP violation in B_s mixing
 - $B \to K^* \ell^+ \ell^-$
- 3. A case for precision flavour physics
 - Supersymmetry with hierarchical squark masses

$$B_{s,d} \rightarrow \mu^+ \mu^-$$
 decays

Strongly helicity suppressed decays that will be measured by LHCb

mode	SM	exp. 95% C.L.	
${\sf BR}(B_s o \mu^+ \mu^-)$	$(3.2\pm 0.2) imes 10^{-9}$	$<43 imes10^{-9}$	
${\sf BR}(B_d o \mu^+ \mu^-)$	$(0.10\pm 0.01) imes 10^{-9}$	$< 7.6 imes 10^{-9}$	

SM and many models with 1 Higgs doublet: dominated by \boldsymbol{Z} penguin

Enhancement of $B_s
ightarrow \mu^+ \mu^-$ above $\sim 10^{-8}$ ruled out by other constraints

$$B_{s,d} \rightarrow \mu^+ \mu^-$$
 in the MSSM

In models with 2 Higgs doublets, the helicity suppression can be lifted by neutral ${\bf Higgs\ penguin}$

$$B_{s,d} \rightarrow \mu^+ \mu^-$$
 in the MSSM

In models with 2 Higgs doublets, the helicity suppression can be lifted by neutral $\ensuremath{\textbf{Higgs penguin}}$

Several SUSY scenarios predict a large enhancement of $BR(B_s \rightarrow \mu^+\mu^-)$ and would be in trouble if no evidence is found **this year** (e.g. SUSY GUTs with Yukawa unification)

$$B_s \rightarrow \mu^+ \mu^-$$
 vs. $B_d \rightarrow \mu^+ \mu^-$

$$B_s \rightarrow \mu^+ \mu^-$$
 vs. $B_d \rightarrow \mu^+ \mu^-$

A stringent test of the MFV paradigm: $\frac{\mathsf{BR}(B_s \to \mu^+ \mu^-)}{\mathsf{BR}(B_d \to \mu^+ \mu^-)} = \frac{|V_{ts}|^2}{|V_{td}|^2}$

SUSY flavour model [Altmannshofer et al. 0909.1333]

$$B_s \rightarrow \mu^+ \mu^-$$
 vs. $B_d \rightarrow \mu^+ \mu^-$

A stringent test of the MFV paradigm: $\frac{\mathsf{BR}(B_s \to \mu^+ \mu^-)}{\mathsf{BR}(B_d \to \mu^+ \mu^-)} = \frac{|V_{ts}|^2}{|V_{td}|^2}$

SUSY flavour models [Altmannshofer et al. 0909.1333]

$$B_s \rightarrow \mu^+ \mu^-$$
 vs. $B_d \rightarrow \mu^+ \mu^-$

A stringent test of the MFV paradigm: $\frac{\mathsf{BR}(B_s \to \mu^+ \mu^-)}{\mathsf{BR}(B_d \to \mu^+ \mu^-)} = \frac{|V_{ts}|^2}{|V_{td}|^2}$

SUSY flavour models [Altmannshofer et al. 0909.1333]

$$B_s \rightarrow \mu^+ \mu^-$$
 vs. $B_d \rightarrow \mu^+ \mu^-$

A stringent test of the MFV paradigm: $\frac{\mathsf{BR}(B_s \to \mu^+ \mu^-)}{\mathsf{BR}(B_d \to \mu^+ \mu^-)} = \frac{|V_{ts}|^2}{|V_{td}|^2}$

SUSY flavour models [Altmannshofer et al. 0909.1333]

$$B_s \rightarrow \mu^+ \mu^-$$
 vs. $B_d \rightarrow \mu^+ \mu^-$

A stringent test of the MFV paradigm: $\frac{\mathsf{BR}(B_s \to \mu^+ \mu^-)}{\mathsf{BR}(B_d \to \mu^+ \mu^-)} = \frac{|V_{ts}|^2}{|V_{td}|^2}$

4th generation SM [Buras et al. 1002.2126] SUSY flavour models [Altmannshofer et al. 0909.1333]

New physics in B_s mixing?

2 observables for the Bs mixing phase

1. Mixing-induced CP asymmetry in $B_s
ightarrow J/\psi \phi$

New physics in B_s mixing?

2 observables for the B_s mixing phase

$$\bar{B}_{s} \bigoplus_{s}^{b} B_{s} = \frac{\Delta M_{s}}{2} e^{i(-2\beta_{s} + \phi_{s}^{NP})}$$

New physics in B_s mixing?

2 observables for the B_s mixing phase

deviation in $S_{\psi\phi}$ recently dropped below 1σ

$$\bar{B}_{s} \bigoplus_{s}^{b} B_{s} = \frac{\Delta M_{s}}{2} e^{i(-2\beta_{s} + \phi_{s}^{NP})}$$

New physics in *B_s* mixing?

Implications of a large B_s mixing phase

Which classes of models can generate a large mixing phase?

See e.g. [Buras, Isidori, Paradisi 1007.5291] [Lenz, Nierste & CKMfitters 1008-1593]

Implications of a large B_s mixing phase

Which classes of models can generate a large mixing phase?

2HDM [Buras, Isidori, Paradisi 1007.5291] SUSY flavour model [Altmannshofer et al. 0909.1333]

2HDM [Buras, Isidori, Paradisi 1007.5291] SUSY flavour models [Altmannshofer et al. 0909.1333]

2HDM [Buras, Isidori, Paradisi 1007.5291] SUSY flavour models [Altmannshofer et al. 0909.1333]

2HDM [Buras, Isidori, Paradisi 1007.5291] 4 generations [Buras et al. 1002.2126] SUSY flavour models [Altmannshofer et al. 0909.1333] $B \rightarrow K^* \ell^+ \ell^-$

 $B o K^* (\to K \pi) \ell^+ \ell^-$ offers a plethora of observables sensitive to new physics

 $B \rightarrow K^* \ell^+ \ell^-$

 $B o K^* (o K \pi) \ell^+ \ell^-$ offers a plethora of observables sensitive to new physics

Observables requiring angular fit with **1** angle (state of the art)

2 angles (early LHC) all 3 angles

S₄

• A₈

Sensitivity to 2 example MSSM scenarios at LHCb with 2 fb^{-1}

[Bharucha, Reece, 1002.4310]

[Altmannshofer, Ball, Bharucha, Buras, Straub, DS, 0811.1214]

 $B \rightarrow K^* \ell^+ \ell^-$: low vs. high q^2

 both regions under reasonable theoretical control and phenomenologically complementary

Outline

1. Introduction

- 2. Selected highlights in the early LHC era
 - $B_{s,d} \rightarrow \mu^+ \mu^-$
 - CP violation in B_s mixing
 - $B \to K^* \ell^+ \ell^-$
- 3. A case for precision flavour physics
 - Supersymmetry with hierarchical squark masses

Effective Minimal Flavour Violation

If weak scale SUSY exists, why didn't it show up in flavour & CPV?

Effective Minimal Flavour Violation

If weak scale SUSY exists, why didn't it show up in flavour & CPV?

Effective Minimal Flavour Violation

If weak scale SUSY exists, why didn't it show up in flavour & CPV?

"Effective MFV"

- all sfermions except stops and left-handed sbottom are heavy
- squark mass matrices aligned with up-type Yukawa matrix
- large flavour-blind CPV phases allowed

[Barbieri, Bertuzzo, Farina, Lodone, Zhuridov 1011.0730; Barbieri, Lodone, DS 1102.0726]

David Straub (Scuola Normale)

Electric dipole moments in EMFV

Flavour blind phases lead to contributions to electric dipole moments.

Exp.: $|d_e| < 1.6 \times 10^{-27} \ e \, {\rm cm}$, $|d_n| < 2.9 \times 10^{-26} \ e \, {\rm cm}$

1-loop contributions **suppressed** by heavy 1st generation sfermions

$$\begin{split} m_{\tilde{\nu}} &> 4.0 \text{ TeV } \times (\sin \phi_{\mu} \tan \beta)^{\frac{1}{2}} \\ m_{\tilde{u}} &> 2.7 \text{ TeV } \times (\sin \phi_{\mu} \tan \beta)^{\frac{1}{2}} \end{split}$$

2-loop contributions lead to effects in the ballpark of the experimental bound

CP asymmetries in EMFV

CP violating contributions to dipole operators not suppressed by $1 \mbox{st}/2 \mbox{nd}$ generation sfermion masses

EMFV results I

Electron EDM vs. $S_{\eta'K_S}$, scanning over ...

 $\tan\beta < 10, \; m_{\widetilde{f}_3} \in [200,700] \; \mathrm{GeV}$

[Barbieri, Lodone, DS 1102.0726]

EMFV results II

CP asymmetry A_7 in $B \to K^* \ell^+ \ell^-$ vs. $S_{\eta' K_S}$, scanning over ...

 $\tan\beta < 10, \; m_{\widetilde{f}_3} \in [200,700] \; \mathrm{GeV}$

[Barbieri, Lodone, DS 1102.0726]

EMFV results III

CP asymmetry in $B \to X_s \gamma$ vs. $S_{\eta' K_S}$, scanning over ...

NB: SM theory uncertainty possibly large [Benzke et al. 1012.3167]

Conclusions

 Flavour physics offers a unique way to look for new physics. Exciting results should be expected already in the first LHC run, including (but not limited to)

- $B_{s,d} \rightarrow \mu^+ \mu^-$
- the B_s mixing phase
- $B \to K^* \ell^+ \ell^-$
- 2. MFV combined with hierarchical sfermions can solve the SUSY flavour and CP problems.

It leads to interesting signatures in

- electric dipole moments
- CP asymmetries in *B* physics accessible at Super *B* factories

PS There are many other interesting probes of NP in the flavour sector! *K* physics, *D* physics, lepton flavour violation, top FCNCs, ...