Commissioning the Double 🐲 Chooz detector

Jaime Dawson, APC

Les Rencontres de Physique de la Vallee d'Aoste, 2011

Contents

- Brief reminder
- Reactor experiments
- Double Chooz concept
- Neutrino signals and backgrounds
- Double Chooz detectors
 - Far Detector (Running!)
- Sensitivity
- Conclusion

Three Neutrino Mixing

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Pontecorvo – Maki – Nakagawa – Sakata (PMNS) matrix

- 3 mixing angles
- 1 CP phase

$$U = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix}$$

solar atmospheric

- 2 mass splittings Δm^2_{μ}
- We don't know $\theta_{13}^{}$, $\delta_{cp}^{}$ and sign of Δm_{31}^{2}

Reactor Experiments

Reactor θ_{13} Experiments

- Disappearance of anti-neutrinos (independent of $\delta_{_{CP}}$ and sign of $\Delta m_{_{31}}$, weak dependence of $\Delta m_{_{21}}$)
- Short distances, ~MeV signals (no matter effects)

Double Chooz collaboration

Project Manager: Ch. Veyssière (CEA-Saclay)

Web Site: www.doublechooz.org/

Concept

Chooz-B 2 x 4.27GW

- 2 'identical' detectors
 - Near
 - 410 m
 - 115 m.w.e
 - ~500 ν/day
 - Far
 - 1050 m
 - 300 m.w.e
 - ~70 ν/day
- Systematics on reactor power, neutrino spectrum, cross-section and detection are insignificant for a relative measurement

Neutrino Signal

- Detect anti-neutrinos via inverse beta decay
 - $p + \overline{\nu} \rightarrow n + e^+$
- In Gd- loaded scintillator
 - e⁺ signal 1-8MeV
 - $e^+ e^-$ annihilation(2 x 511 keV)

•
$$E_{vis} = E_v - (M_n - M_p) + m_e$$

- Delayed neutron capture on
 - Gd ~30 µs ~ 8 MeV (>80%)
 - H 2.2 MeV

Backgrounds

Our signal is a positron followed by a neutron capture (2 triggers) **Accidental** Correlated

- Dominant source of accidentals Cosmogenics (β -neutron) - Radioactivity (from PMT)
- Solution we aim for a singles rate of less than 5/s above 0.7 MeV [expect far: 2 day^{-1} near: 11 day^{-1}]
 - Stringent radiopurity constraints

	^{40}K	^{238}U	^{232}Th	⁶⁰ Co
	g/g	g/g	g/g	mBq/Kg
Target LS	10^{-10}	10^{-13}	10^{-13}	0.000
Target Acrylics	10^{-8}	10^{-11}	10^{-11}	<u> 1997</u>
GCLS	10^{-10}	10^{-13}	10^{-13}	<u></u>
GC Acrylics	10^{-8}	10^{-11}	10^{-11}	<u> 2000</u>
Buffer Oil	_	10^{-12}	10^{-12}	1 <u>0050</u>
Buffer Vessel	- 83 83	10^{-9}	10-9	15
Veto LS	- 33 3	10^{-10}	10^{-10}	

- - Li-9 and He-8 long lived [expect far: 1.5 day^{-1} near: 4 day^{-1}]
- Fast neutrons
 - Proton Recoil (positron-like signal) followed by neutron capture [expect far: 0.2 day^{-1} near: 0.5 day^{-1}]

The Laboratories

The Detectors

Muon Tracking

- Outer Veto
 - Tag near miss muons
 - Entry point of any muon
- Inner Veto
 - Efficient tag of muons and secondaries
 - Track muon
- Muon Electronics
 - Attenuated output of Inner Detector PMTs
 - Track muon

Calibration

Far Detector - history

Lab for the original Chooz experiment

Far Detector - history

Far Detector – Filled and Shielded

Far Detector

• Amplified low noise outputs

to Waveform Digitisers

output to Trigger

•Summed and stretched

Electronics

Trigger Uger Waveform Digitisers Muon

Trigger

- custom-built trigger system (VME)
- Trigger based on analog sum on groups of PMTs.
 Gives Particle ID based on Energy

Waveform Digitisers 500 MHz 8-bit flash ADC (developed with Caen – V1721X) Dead-time-less (for our expected event rate) In-house firmware allows choice of event size based on Info from trigger Time between consecutive events

Neutrino DAQ

- Waveform Digitisers
 - Digitise all 390 Inner
 Detector and 78 Inner
 Veto PMTs
 - 60 FADC cards (split over 4 VME crates)
- Taking data now!

Far Detector - scintillation

Average light time response from a run during the filling of the Inner Detector

Far Detector - Events!

Far Detector - Events!

Muon in Inner Veto

Status: Near Lab

Near Lab to be completed by March 2012

Improvements on Chooz

Chooz : R = 1.01 ± 2.8% (stat) ± 2.7% (syst)

- Statistical
 - Large Volume
 - 5.55m³ -> 10.3m³
 - Run Time
 - ~months -> 3-5 yrs
 - Number of Events
 - 2700 -> 60,000 (far in 3 yrs)

0.4 %

- Systematic
 - Reactor
 - Detector
 - Analysis
- > < 0.6%

Jaime Dawson, APC Paris

Systematics: Analysis

- Lower threshold (see all of positron spectrum)
- Target Acrylic vessel (no fiducial volume cut)

*average values

* Easier to control near vs far than absolute

<E> = 3.74 MeV RMS = 1.47 MeV

e

(Nb events)

200

Systematics

		Chooz	Double-Chooz		
Reactor- induced	v flux and σ	1.9 %	<0.1 %		
	Reactor power	0.7 %	<0.1 %	I wo "identical" detectors,	
	Energy per fission	0.6 %	<0.1 %	Lon Dig	
Detector - induced	Solid angle	0.3 %	<0.1 %		
	Volume	0.3 %	0.2 %	Precise target mass measurement	
	Density	0.3 %	<0.1 %	Accurate T control (near/far)	
	H/C ratio & Gd concentration	1.2 %	<0.1 %	Same scintillator batch + Stability	
	Spatial effects	1.0 %	<0.1 %	Spill in/out compensate to ~1%	
	Live time	?	0.25 %	Difference near/far is relevant !	
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %	(see previous slide)	
	Total	2.7 %	< 0.6 %		

Sensitivity

M. Mezzetto, 0905.2842

sin²2Θ₁₃~0.03 (for Δm²₃₁=2.5x10⁻³ eV²)

Conclusion

- Far detector is Running!
- With far
 - Achieve a sensitivity of $\sin^2 2\Theta_{13} \sim 0.06$ with one year of data
- With near and far
 - measure $\sin^2 2\Theta_{13}$ to 3σ if $\sin^2 2\Theta_{13} > 0.05$,
 - or exclude $sin^2 2\Theta_{13}$ down to 0.03 (90% C.L) with 3 years of running
 - Expect interesting results from Double Chooz soon!

backups

Complementary to Beam experiments

- Example of Double Chooz results compared to T2K
 - Assume full power for T2K
 - 2 years of 2 detector (DC)
 - Full =90%, dashed 3σ
- No dependence (

Calibration Sources

- Objectives
 - Relative neutrino detection efficiency between near and far < 0.5%
 - positron/gamma energy scale to 1%
 - Neutron energy scale to 25%

Neutrino DAQ

Total systematics: <~ 0.6% Statistics: 60000 neutrino events @ Far Detector

Spectrum

- Two independent measures
 - Normalisation
 - Spectral Distortion

Background Comparison

Detector	Site	Background						
			Accid	ental	Correlated			
			Materials	PMTs	Fast n	μ -Capture	$^{9}\mathrm{Li}$	
CHOOZ		Rate (d^{-1})		Last a construction	and all states of the second	And an and a second second	0.6 ± 0.4	
$(24 \ \nu/d)$		Rate (d^{-1})	0.42 ± 0.05		$1.01 \pm 0.04(stat) \pm 0.04(stat)$		0.1(sys)	
	\mathbf{Far}	bkg/ν	1.6%		4%			
		Systematics 0.2%		2%	0.4%			
Double Chooz		Rate (d^{-1})	0.5 ± 0.3	1.5 ± 0.8	0.2 ± 0.2	< 0.1	1.4 ± 0.5	
(69 ν /d)	\mathbf{Far}	bkg/ν	0.7%	2.2%	0.2%	< 0.1%	1.4%	
		Systematics	< 0.1%	< 0.1%	0.2%	$<\!0.1\%$	0.7%	
Double Chooz		Rate (d^{-1})	5 ± 3	17 ± 9	1.3 ± 1.3	0.4	9 ± 5	
$(1012 \ \nu/d)$	Near	bkg/ν	0.5%	1.7%	0.13%	< 0.1%	1%	
		Systematics	< 0.1%	< 0.1%	0.2%	$<\!0.1\%$	0.2%	

estimates with "old" near detector location = conservative (with new location: Nv/2, $N_u/3$)

hep-ex/0606025

Signal/Bkg >50

M. Mezzetto, 0905.2842

Gd-doped Liquid Scintillator

100kg Gd salt

- Stability tests reassuring
 - No change seen over ~700 days
- Scintillator ingredients for both detectors ready to be mixed (MPIK)
- Mixing in one batch
 - Exact proportions for both detectors (H, Gd)

FADC

- Waveform digitisers of vDAQ
 - APC responsibility [Courty, Kryn, Dawson, Akiri]
- Developed in partnership with CAEN
 V1721X
 - 8 channels
 - digitises at 500 MHz to 8-bit
- Dead-time-less
- Enhanced with In-House firmware
 - Variable waveform size (max 4 µs)
 - 2eSST DMA transfer
- Digitise all PMT signals (60 cards)

