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MINOS = Main Injector Neutrino 
Oscillation Search

- Long-baseline neutrino oscillation 
experiment, utilizing the Fermilab NUMI 
muon neutrino beam

- Use two magnetized tracking 
calorimeter detectors to study the 
neutrino flux from this beamline

Aim = study the oscillation of neutrinos 
between these two detectors

Introduction



 

MINOS research focus:
- Neutrino oscillations in the atmospheric 
and accelerator regime:

Δmatm
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  ~ 210-3
 eV2

Specifically:
- Study neutrino oscillation parameters 
sin22θ23 and ∆m2

32

- Do the same study for antineutrino 
oscillation and compare behavior
- Constrain or measure θ13

- Oscillations to sterile states?

MINOS Measurements

Solar sector Majorana Phases

At
m

os
ph

er
ic

So
la

r

CP Atmospheric

In
cr

ea
si

ng
 m

as
s

Normal hierarchy

Neutrino Oscillations: Our Physics Goals

PMNS Matrix:



 

- Muon Neutrino Beamline (NuMI)

Two functionally equivalent detectors:

Near Detector: 0.029 kT fiducial mass
→ Unoscillated neutrinos

Far Detector: 4.0 kT fiducial mass at 
depth of 700 m (2100 mwe)
→ Oscillated neutrinos

- Two detectors  = allows us to reduce 
systematic effects, such as flux mismodeling 
and cross-section uncertainties

- L/E ~ 500 km/GeV – atmospheric sector

The MINOS Experiment

Far Detector

Near Detector



 

The MINOS Experiment:
Beamline and Detectors



 

The NuMI Beamline

Production: 120 GeV p+ from Main Injector collides 
with graphite target to produce hadrons (mostly pions 
and kaons)

Focusing: Two magnetic focusing horns focus hadrons
- Focus pi+/K+ for neutrino beam
- Focus pi-/K- for antineutrino beam

Decay: Hadrons decay in 675 m long decay pipe

End = on-axis wide-band muon neutrino beam

- Target and horn can be adjusted to change beam 
peak



 

The NuMI Beamline

THESE ANALYSES = 7.2x1020ν+ 1.75x1020 anti-ν)
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Future Analyses



 

Both MINOS detectors consist of a series of 
octagonal planes through which the neutrino 
beam passes and interacts
- particularly well suited for studying μ+/μ- tracks

- Each plane contains: 
Layer of 1” steel – target mass
Layer of 1 cm thick / 4.1 cm wide strips 

of plastic scintillator – photons

Detectors are magnetized (~1.3 T) 
→ Muon tracks bend in field, allow you to 
determine charge sign: neutrino or antineutrino?

Detector Technology

μ-



 

Events in the MINOS Detector

νμ Charged Current Events

- Obvious signature: hadronic shower 
followed by long muon track, curved in 
magnetic field

μ-



 

νe Charged Current

- electron produces electromagnetic 
response, resulting in a compact shower

Events in the MINOS Detector

e-



 

Neutral Current Events

- short, diffuse hadronic shower; cannot tell 
what type of neutrino interacted

Events in the MINOS Detector

ν



 

Scientific Analyses



 

- One primary goal of MINOS is to make 
precision measurements of muon 
neutrino disappearance

- For oscillation, survival probability:

-  An Advantage of MINOS: 
Fixed L, and set range of E
→ Can measure Δm2

32
, sin2(2θ

23
)

- Presumed to be oscillating to tau 
neutrinos (which we do not directly 
observe in MINOS)

ν
μ
 Disappearance

νµ → νX
P =1−sin2223sin21.27m32

2 L /E



 

P =1−sin22sin21.27m2 L/E 

Basic analysis: 
- Use Near Detector to predict unoscillated spectrum at the Far Detector
- Compare predicted unoscillated spectrum to (oscillated?) data

Unoscillated

Oscillated
sin2(2θ)

Δm
2

Monte Carlo
(Input parameters:  sin22  = 1.0,  θ mΔ 2 = 3.35x10-3 eV2 )

ν
μ
 Disappearance



 

Opening the Box

No Oscillation Prediction: 2451

Observation: 1986



 

- νμ ↔ ντ  oscillation hypothesis holds up when compared to alternate models

- Pure decoherence disfavored: >8σ

- Pure decay disfavored: >6σ

Models of Disappearance

G.L. Fogli et al., PRD67:093006 (2003)

V.D. Barger et al., Phys. Lett. B 462, 
109 (1999).



 

- Includes systematic 
uncertainties from:

- Normalization
- NC background
- shower energy
- track energy

Results

†Super-Kamiokande Collaboration (preliminary)

∣m2∣=2.35−0.08
0.11×10−3 eV2

sin220.91 90 % C.L.

FNAL Wine & Cheese
Alex Himmel
June 14, 2010



 

- MINOS also has the unique ability to 
compare neutrino and antineutrino 
oscillations

- We can run beam in Antineutrino Mode 

- We can use the curvature of muons in 
the magnetic field to distinguish ν

μ
 and ν

μ
.

Question: Do neutrinos and anti-
neutrinos behave in the same way?

ν
μ
 Disappearance

(Image: P. Vahle)

νµ → νX

P   =1−sin2223sin21.27 m23
2 L/E 



 

Producing an Antineutrino Beam

Standard Neutrino Mode



 

Producing an Antineutrino Beam

Antineutrino Mode



 

Results

No Oscillation Prediction: 
155
Observation: 97

- No oscillations disfavored at 
6.3σ

- Dominated by low statistics, 
including 30% uncertainty on 
the νμ background

- Systematics less important

∣ m2∣=3.36−0.46
0.45×10−3 eV2

sin2 2=0.86±0.11



 

- Neutrino and anti-
neutrino parameters 
differ at ~2σ level

- We are in the 
process of at least 
doubling these 
statistics and doing a 
joint neutrino 
/antineutrino analysis

Results

FNAL Wine & Cheese
Alex Himmel
June 14, 2010



 

Future Running



 

- Standard explanation for νμ   
disappearance is oscillation to ντ 

- Another possible alternative 
explanation is oscillation to a 
fourth, “sterile” neutrino flavor

Rate of Neutral Current Events:
- We can predict a rate of NC 
events at the Far Detector
- This rate should not change for 
three neutrino oscillation scenario
- A deficit might suggest 
oscillation to a fourth, “sterile” 
neutrino

- Consider both m4 = m1 and m4 >> 
m3 models

NC Event Rates

(Image: P. Vahle)

νµ → νS



 

Expect: 757
Observe: 802

- Results are consistent with no 
significant oscillation to sterile 
neutrinos

- This is also taking into account 
the possibility of electron neutrino 
appearance at the Far Detector.

The fraction of events which 
could be oscillating to sterile 
neutrinos:
  

Neutral Current Analysis Results

f s≡
Ps

1−P

f s0.220.40e 90 % C.L.



 

- MINOS is also capable of using existing detector 
technology to look for  νμ to  νe oscillations

- This would allow us to better constrain or 
maybe even measure the as yet unmeasured 
mixing angle θ13:

Current limit from CHOOZ reactor experiment:  
sin2(2θ13) < 0.15 at 90% CL
(assuming |Δm2| = 2.43 x 10-3 )

- A non-zero θ
13

 would allow for the possibility of 
neutrinos exhibiting CP violation

νe Appearance

(Image: P. Vahle)

νµ → νe

P e≈sin 2213 sin223 sin21.27m32
2 L /E



 

- Unlike an experiment like CHOOZ, MINOS result would depend on sin2(θ23), CP 
violation phase δ, and choice of mass hierarchy (normal or inverted)

- Full equations:

νe Appearance

Small solar contribution

CP phase

Take other terms from MINOS best fits



 

Identifying Signal and Background in the νe  Analysis

- Main problem for νe study = small expected signal, with large background 
contamination (mostly Neutral Current events)

Particle Identification for νe Charged Current events:  Neural net algorithm, 
trained on 11 separate variables quantifying event shape and energy profile

- Efficiency of 40% for νe signal events 

- Apply this cut to the Near Detector and use it to make a Far Detector 
background prediction



 

 νe  Analysis

Predicted FD background: 49.1±7(stat)±2.7(sys) 



 

 νe  Analysis

Predicted FD background: 49.1±7(stat)±2.7(sys) 
Observed:  54 ( 0.7σ excess )



 

Results

Limits:   Assuming 2sin2(θ23)=1, CP violation 
phase δ=0, and |Δm2| = 2.43 x 10-3:

Normal mass hierarchy: sin2(2θ13)<0.12

Inverted mass hierarchy: sin2(2θ13)<0.20

- New analysis with more data and more 
sensitive analysis techniques will be 
presented later this year

Paper describing analysis  
P. Adamson et al. “New constraints on 
muon-neutrino to electron-neutrino 
transitions in MINOS.” Phys. Rev. D 82, 
051102 (2010).  arXiv:1006.0996v1 [hep-ex]

 



 

Summary 

νμ Disappearance:
- New best fit points are consistent with 
standard neutrino oscillations:

νμ Disappearance:
- Additional data are being taken!

Sterile Neutrino Search:
- No significant evidence for reduced 
neutral current rate or oscillations to 
sterile neutrinos

Nue Appearance:
- Non-significant (0.7 sigma) νe excess 
seen, with new limit for θ13

Normal mass hierarchy: sin2(2θ13)<0.12

- Planning a new analysis for Spring 2011 
with improved analysis and new data

∣ m2∣=3.36−0.46
0.45×10−3 eV2

sin2 2=0.86±0.11

∣m2∣=2.35−0.08
0.11×10−3 eV2

sin220.91 90 % C.L.
f s0.220.40e 90 % C.L. 



 

It's been an exciting year for MINOS...

Stay tuned for lots more νs to come!



 

Backup Slides



 

Neutrinos:
- interact weakly via flavor eigenstates:

ν
e
  ν

μ
  ν

τ

- propagate as mass eigenstates:
ν

1  
  ν

2
  ν

3

- Non-zero different masses = neutrino can change its flavor eigenstate as it 
propagates, sliding in and out of phase:

- For the case of two neutrinos:

Neutrino Oscillations



 

Near Detector

- Measures beam before oscillations

- 282 planes, 0.98 ktons total / 0.029 ktons fiducial

- geometry: 3.8x4.5 m

- LOTS OF NEUTRINOS: Mean of 3 ν interactions 
per beam spill (8 or 10 µs), as many 10

- For a 250kW beam: 104 ν/day

ν

Calorimeter Spectrometer



 

- Look here to see if neutrinos oscillated!

- 486 planes, 5.4 ktons total / 4.0 ktons fiducial

- geometry: 31 m long total, in two 15 m 
sections, each with 192 scintillator strips

- 700 m underground to reduce cosmic ray 
background to negligible level

- MUCH QUIETER: only a few neutrino 
interactions per day 

Far Detector



 

Detector Technology
2.54 cm Fe

Extruded
PS scint.
4.1 x 1 cm2

WLS fiber

Clear
Fiber cables

Multi-anode PMT



Calibrations

• Calibration of Detector response using:
– LED-based Light Injection system (PMT gain)
– Cosmic ray muons (strip to strip and detector to detector)
– Calibration detector (overall energy scale)

• Energy scale calibration:
– 1.9% absolute error in ND
– 1.1% absolute error in FD
– 1.6% relative

Slide: Alec Habig



 

- Far Detector Spectrum is the same as Near Detector Spectrum to first order 

- Beam spectrum: dependent on parent energy and decay angle
- Higher energy hadron will decay further down pipe
- Near and Far Detectors have different angular distributions:
 Near Detector = distributed source
 Far Detector = point source

- Monte Carlo allows us to correct for energy smearing and acceptance

- Use knowledge of beam geometry and pion decay kinematics to predict 
the Far Detector spectrum from the measured Near Detector spectrum

Going from Near to Far

(Image: P. Vahle)



 

Data Selection Cuts:

- Data Quality & Fiducial 
Volume

- Event must have at least one 
valid reconstructed track

- Separate out positive and 
negative charge events

- Particle ID: Likelihood-based 
parameter, separates between 
NuMu Charged Current and 
Neutral Current 

Neutrino Analysis Event Selection



 

Making a Far Detector Prediction

Beam matrix:

- accounts for pion 2-body decay kinematics 
and geometry

- shown: example of spread of energy bins 
from ND to FD.

Prediction of FD Spectrum
→ CONDUCT A BLIND ANALYSIS

- First remove background events (NC)

- Next, must turn the Near Detector spectrum 
into a Far Detector prediction....



 

Improvements from the 2008 
Analysis: 

- More Data (3.4e20 → 7.2e20 POT!)

- Updated reconstruction and 
simulation

- New likelihood-based selection, 
with higher efficiency

- No charge sign cut (recover low 
energy events)

- Improved shower energy 
resolution

- Now fit in bins of energy resolution

- Improved systematic uncertainties 

Improvements for 2010

2008 result:  arXiv:0806.2237v1 [hep-ex]



 

- Split up sample into five bins by energy 
resolution (plus one wrong-sign bin)
- this gives more weight to best-resolved events 

- Do a simultaneous fit to νμ ↔ ντ oscillation 
parameters:

What is the Best Fit?



 

Analysis:

Comparison to Neutrinos



 

Analysis:

- ND Data Quality cuts remove poorly reconstructed events

-ND and FD cuts:
- <47 event planes
- track must not extend more than 6 planes from shower 

- Extrapolate with Far to Near spectrum ratio for prediction

Selecting an NC Sample



 

- The MINOS detector is not optimized for studying 
electron neutrino appearance

Signal: νe Charged Current events  

Background:
Neutral Current: hadronic shower easily mistaken for 
EM shower

- decay of a π0 can make NC look particularly like 
a νe CC event

νμ CC: mostly easily removed by long track, but some 
events with short tracks are harder to eliminate
νe CC: must account for 1.3% contamination by non-
signal beam νe CC events 

Making a νe  Selection

EM Showers in MINOS Detector Parameters
Radiation length in steel: 1.76 cm Steel thickness: 2.54 cm

Molière radius: 3.7 cm Strip width: 4.1 cm

NC

νe CC

νμ CC

Signal!



 

- How do we turn a Near Detector rate 
into a Far Detector prediction?

- Major Near/Far differences (beam flux, 
fiducial volume) are easy to correct for

- However, the separate Near Detector 
background components extrapolate 
differently to the Far Detector

- νμ → νx oscillation.

- Could use Monte Carlo to separate 
components, but in the Near Detector, we 
see Data/MC disagreements of up to 15%

- Red error bands in top plot are 
systematic uncertainties in MC 
- most of this due to modeling of 
hadronic production

- We cannot rely on the MC to give us our 
background decomposition

Making a Far Detector Prediction

νe candidates
Near Detector



 

Method:
- Adjust the NUMI beamline magnetic 
focusing horn and/or the position of the 
hadron production target to create different 
beam energy configurations.

1) Standard Beam: NUMI hadrons focused 
to create a low-energy peak at ~3 GeV.

2) Horn Off Beam: Horn is turned off so 
hadrons no longer focused → drastically 
reduces the selection of νμ CCs.

3) High Energy Beam: Target moved  
upstream from the horn, focusing higher 
energy pions

-beam has a ~9 GeV peak, with similar 
reduction in selection of νμ CC events.

Making a Far Detector Prediction



 

Near Detector Background Decomposition: 
For each configuration, in the Near Detector, we have: 

A) the measured overall background (Data)
B) the relative rates of each background type between configurations (Monte Carlo)
- Linear System: 3 beam configurations, 3 background components (with 
injected νe MC constraint)
→  Solve to get the background decomposition

Background Decomposition



 

- Apply this selection to the Near 
Detector Data

- Adjust NuMI beamline to separate 
this background into its individual 
components.

- Can then predict background 
contamination at the Far Detector

Predicting the Far Detector 
Background: 
- Extrapolate each component to the 
Far Detector in bins of energy

- α = background component

Extrapolation

)(
)()()(Predicted

i
MC

i
MC

i
Data

i ENear
EFarENearEFar

α

α
αα =



 

Nue Appearance Systematic Error 

 Total Statistical Uncertainty: ~14%

 



 

Blind Analysis Double Checks

 

1) Muon Removed Data:
- Sample of “hadronic showers” made by 
removing tracks from numu CC events
- Is our prediction of background 
rejection consistent wit the data?
- Looks good

2)  Anti-PID Selection:
- Reverse cut: ANN < 0.50
- Does the analysis chain (background 
prediction and extrapolation) work?
- Predict 314 +/- 18 (stat) for θ13=0
- Observe 327
- Looks good
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