Charmonium Results with **BESIII**

XXV Rencontres de Physique de La Vallée d'Aoste *La Thuile 2011, Feb.27-Mar.5, Italy*

Dmitry Dedovich (JINR) on behalf of the BESIII collaboration

Outlook

- BEPC II & BES III
- Physics results
 - h_c
 - ψ'→γπ⁰,γη,γη'
 - χ_{cj} decays
 - $\chi_{cJ} \rightarrow \gamma \phi, \gamma \omega, \gamma \rho^0$
 - $\chi_{cJ} \rightarrow \phi \phi, \omega \omega, \phi \omega$
 - $\chi_{cJ} \rightarrow K^+ K^- \pi^+ \pi^-$
- Summary

BEPC-II : a high luminosity doublering collider

> Beam energy: √s=2.0 - 4.6 GeV
> Optimum energy: √s= 3.7 GeV
> Beam crossing angle:22 mrad
> Designed luminosity:1.0×10³³
> Record luminosity: 0.57×10³³ cm⁻²s⁻¹
> Energy spread: 5.16x10⁻⁴

Physics of τ-charm region

BES III Detector

Int. J. Mod. Phys. A24, 377 (2009) NIM A614, 345 (2010)

- Be beam pipe
- He-based drift chamber:

 $\delta p/p=0.58\%$, d*E*/d*x*~6% at 1 GeV

- CsI electromagnetic calorimeter: δE~2.5%, space 0.6 cm at 1 GeV
- TOF: 80 ps (barrel), 100 ps (endcap)
- **1T Superconducting magnet**
- Muon system : 9 layers of RPC in magnet yoke

Close to 4π acceptance(93%), very little material inside tracker, excellent tracking & calorimetry

BEPCII/BESIII Milestones

- Mar. 2008: Collisions at 500 mA ×500 mA, Lum.: 1 ×10³² cm⁻²s⁻¹
- Apr. 30, 2008: Move BESIII to IP
- July 18, 2008: First e+e- collision event in BESIII
- Apr. 14, 2009 106 M \verts
- July 28, 2009 225 M J/ψ events
- June 27, 2010 0.975 fb⁻¹ at ψ(3770) (includes 75 pb⁻¹ scan)

 $h_c({}^1P_1)$ The least studied charmonium state below DD threshold

- $B(\psi' \rightarrow \pi^0 h_c)$ is a measure of isospin violation in hadronic charmonium decay
- Hyperfine ¹P mass splitting $\Delta M_{hf}(^{1}P) = \langle M(^{3}P_{J}) \rangle - M(^{1}P_{1})$ important to learn about spin-spin interaction of heavy quarks $\langle M(^{3}P_{J}) \rangle = 1/9(M\chi_{c0}+3M\chi_{c1}+5M\chi_{c1})$
- Large branching of E1 radiation transition
- Theory predictions for $B(h_c \rightarrow \gamma \eta_c)$ and _{3.2} $B(\psi' \rightarrow \pi^0 h_c)$ vary by factor ~2
- Only mass and combined brancing $Br(\psi' \rightarrow \pi^0 h_c) \times Br(h_c \rightarrow \gamma \eta_c)$ was measured before(CLEO, 2008)

$h_c in \psi' \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c at BES III$

Combined analysis of the inclusive and E1- tagged spectrums of recoil π^0

Select events with E1-photon to tag $h_c \rightarrow \gamma \eta_c$; Use tagged π^0 recoil mass spectrum to extract

- •M(h_C)
- • $\Gamma(h_C)$ (first measurements)
- •B($\psi' \rightarrow \pi^0 h_c$)×B($h_c \rightarrow \gamma \eta_c$)

Use inclusive π^0 recoil mass spectrum in combination with tagged results to obtain $B(\psi' \rightarrow \pi^0 h_c)$ and $B(h_c \rightarrow \gamma \eta_c)$ (first measurements)

h_c : results

✓ First measurements of $\Gamma(h_C)$, $Br(\psi' \rightarrow \pi^0 h_c)$ and $Br(hc \rightarrow \gamma \eta_c)$ ✓ Hyperfine splitting $\Delta M_{hf}(^1P)$ is compatible with zero

	BES III	CLEO-c
	PRL 104, 132002	PRL 101, 182003
$Br(\psi' \rightarrow \pi^0 h_c) \times Br(h_c \rightarrow \gamma \eta_C) * 10^{-4}$	4.58±0.40±0.50	4.16±0.30±0.37
M [MeV/c ²]	3525.40±0.13±0.18	3525.20±0.18±0.12
$\Delta M_{hf}(^{1}P) [MeV/c^{2}]$	0.10±0.13±0.18	0.08±0.18±0.12
	BES III	Theoretical predictions
Γ(h _C)[MeV]	$0.73 \pm 0.45 \pm 0.28$	1.1 (NRQCD) Kuang
	< 1.44 @ 90%CL	0.51 (PQCD) Kuang
		41 (NRQCD) Kuang
$Br(h_c \rightarrow \gamma \eta_C)$ [%]	54.3±6.7±5.2	88 (PQCD) Kuang
		38 Godfrey, Rosner
$Br(\psi' \rightarrow \pi^0 h_c) \times 10^{-4}$	8.4±1.3±1.0	4 – 13 Kuang

Kuang, PRD65, 094024 (2002)

Godfrey & Rosner, PRD 66, 014012 (2002)

$\psi' \rightarrow \gamma P$ (P= π^0 , η and η')

- Important for testing various phenomenological mechanisms: VMD model, $\eta_c - \eta^{(\prime)}$ mixing, 2-gluon couplings to qq states, and final state radiation by light quarks.
- $R_{J/\psi} = B(J/\psi \rightarrow \gamma \eta)/B(J/\psi \rightarrow \gamma \eta')$ predicted by 1st order perturbation theory.
- $R_{\psi'} = B(\psi' \rightarrow \gamma \eta) / B(\psi' \rightarrow \gamma \eta') \approx R_{J/\psi}$ was expected.
- $B(\psi' \rightarrow \gamma \pi^0)$ expected to be small (~2.2 x 10⁻⁷)
- Recently, CLEOc reported on J/ψ , ψ' , $\psi'' \rightarrow \gamma P$:
 - Found no evidence for $\psi' \rightarrow \gamma \pi^0$ or $\gamma \eta$

CLEOc, PRD 79, 111101 (2009)

- Determine B($\psi' \rightarrow \gamma \pi^0$) < 5 x 10⁻⁶
- Obtain $R_{\psi'} < 1.8\%$ at 90% CL and $R_{J/\psi} = (21.1 + 0.9)\%$

$\psi' \rightarrow \gamma P$ (P= π^0 , η and η') at BES III

11

$\psi' \rightarrow \gamma P$ (P= π^0 , η and η') at BES III

Phys. Rev. Lett 105, 261801 (2010)

Mode	BESIII	Combined BESIII	PDG
$\psi' ightarrow \gamma \pi^0$	$1.58 \pm 0.40 \pm 0.13$	$1.58 \pm 0.40 \pm 0.13$	≤ 5
$\psi' \to \gamma \eta (\pi^+ \pi^- \pi^0)$	$1.78 \pm 0.72 \pm 0.17$	$1.38 \pm 0.48 \pm 0.09$	< 2
$ ightarrow \gamma \eta (\pi^0 \pi^0 \pi^0)$	$1.07 \pm 0.65 \pm 0.08$		
$\psi' ightarrow \gamma \eta' (\pi^+ \pi^- \eta)$	$120\pm5\pm8$	$126 \pm 3 \pm 8$	121 ± 8
$\rightarrow \gamma \eta' (\pi^+ \pi^- \gamma)$	$129 \pm 3 \pm 8$		

Branching Ratios (x 10⁻⁶)

•Measured branching ratios of $\psi' \rightarrow \gamma \eta$ and $\psi' \rightarrow \gamma \pi^0$ for the first time •The first measurement of $R_{\psi'} = (1.10 \pm 0.38 \pm 0.07)\%$ •Confirmed $R_{\psi'} \ll R_{J/\psi}$

 $R_{\psi'} \ll R_{J/\psi}$ poses a significant challenge to theory.

χ_{cJ} decays

Could be a good place to:

study gluonium: χ_c → gg → (qq)(qq).
 C. Amsler and F. E. Close, Phys. Rev. D 53, 295 (1996).

test color octet mechanism.

G. T. Bodwin *et al.*, Phys Rev. Lett. D51, 1125 (1995). H.-W. Huang and K.-T. Chao, Phys. Rev. D54, 6850 (1996). J. Bolz *et al.*, Eur. Phys. J. C 2, 705 (1998).

 χ_{cJ} cannot directly originate from e⁺e⁻ collisions, but can be easily produced and tagged in ψ' radiative decay

Measurements of $\chi_{cJ} \rightarrow \gamma V$, V=(ϕ, ω, ρ^0)

The recent experimental results (CLEOc: PRL 101, 151801 (2008)) for $B(\chi_{c1} \rightarrow \gamma \omega, \gamma \rho^0)$ are by an order of magnitude higher than the corresponding theoretical predictions.

mode	CLEO	pQCD	NRQCD	NRQCD+QED
$B(\chi_{c1} \rightarrow \gamma \ \rho^0) * 10^{-6}$	$243 \pm 19 \pm 22$	14	41	42
$B(\chi_{c1} \rightarrow \gamma \omega) * 10^{-6}$	$83\pm15\pm12$	1.6	4.6	4.7

Difference may be explained by non-perturbative QCD "loop corrections" : D. Y. Chen , Eur. Phys. J. C 70, 177 (2010)

New measurements are nesessary to check theory

Measurements of $\chi_{cJ} \rightarrow \gamma V$, V=(ϕ , ω , ρ^0)

- Select γγK⁺K⁻, γγπ⁺π⁻, γγπ⁺π⁻π⁰ candidate for ψ'→γγφ, ψ'→γγρ, ψ'→γγω event (mass windows for V, 4-C fit for total 4-momentum)
- Fit γV mass to extract χ_{cJ} event number

Measurements of $\chi_{cJ} \rightarrow \gamma V$, V=(ϕ, ω, ρ^0)

BES III Prelimenary

First evidence of $\chi_{c1} \rightarrow \gamma \phi$

B (10 ⁻⁶)	BESIII	CLEOc	significance
$\chi_{c0} \rightarrow \gamma \phi$	< 16.1	< 6.4	2.9 σ
$\chi_{c1} \rightarrow \gamma \phi$	$25.8 \pm 5.2 \pm 2.0$	< 26	6.4 σ
$\chi_{c2} \rightarrow \gamma \phi$	< 8.0	< 13	
$\chi_{c0} \rightarrow \gamma \rho^0$	< 10.2	< 9.6	
$\chi_{c1} \rightarrow \gamma \rho^0$	$228 \pm 13 \pm 16$	$243 \pm 19 \pm 22$	>> 10 σ
$\chi_{c2} \rightarrow \gamma \rho^0$	< 20.3	< 50	
$\chi_{c0} \rightarrow \gamma \omega$	< 12.7	< 8.8	
$\chi_{c1} \rightarrow \gamma \omega$	$69.7 \pm 7.2 \pm 5.6$	$83 \pm 15 \pm 12$	>> 10 σ
$\chi_{c2} \rightarrow \gamma \omega$	< 6.0	< 7.0	

16

Study of $\chi_{cJ} \rightarrow VV$ ($V = \varphi, \omega$) at BES III

•Only χ_{c0} and χ_{c2} decays into $\phi\phi$ and $\omega\omega$ have been observed.

•χ_{c1} → VV is suppressed due to helicity selection rule in pQCD
 •χ_{c.I} → ω φ is doubly OZI suppressed,

never observed before

Study of $\chi_{cJ} \rightarrow VV$ ($V = \varphi, \omega$) at BES III

Signal and sideband areas for $\varphi \varphi \rightarrow 4K$, $\omega \omega \rightarrow 2(\pi^+ \pi^- \pi^0)$, $\varphi \omega \rightarrow KK\pi^+ \pi^- \pi^0$ and $\varphi \varphi \rightarrow KK\pi^+ \pi^- \pi^0$ candidates

PID and total 4-momentum 4C-kinematic fit constraint applied to all γVV candidate : $\chi 2(4C) < 60$ for $\gamma \phi \phi$ and $\gamma \omega \phi$ candidate, $\chi 2(4C) < 200$ for $\gamma \omega \omega$

Study of $\chi_{cJ} \rightarrow VV$ ($V = \varphi, \omega$) at BESIII

surprisingly clear χ_{c1} signal

Fit M(VV) spectrum with signal and backgrounds combination to extract branchings

Signal: MC χ_{CJ} shape (gray dotted line)

Backgrounds: •Normalized sidebands (filled blue)

Phase-space for non - χ_{CJ}
2-nd order polynomial for combinatorial bg (red line)

Results of $\chi_{cJ} \rightarrow VV$ ($V = \varphi, \omega$) at BESIII

BES III Preliminary

Final states	Channel	$N_{\rm net}$	ϵ (%)	$Br(\times 10^{-4})$	PDG [13]
$\gamma 2(K^+K^-)$	$\chi_{c0} \rightarrow \phi \phi$	432.1 ± 22.6	22.41	$7.81 \pm 0.38 \pm 0.80$	9.3 ± 2.0
	$\chi_{c1} \rightarrow \phi \phi$	253.6 ± 16.5	26.43	$4.06 \pm 0.26 \pm 0.43$	
	$\chi_{c2} \rightarrow \phi \phi$	629.3 ± 25.7	26.11	$10.74 \pm 0.43 \pm 1.10$	15.4 ± 3.0
	$\chi_{c0} \to \phi \phi$	178.8 ± 16.2	1.92	$9.13 \pm 0.83 \pm 1.04$	9.3 ± 2.0
$\gamma K^+ K^- \pi^+ \pi^- \pi^0$	$\chi_{c1} ightarrow \phi \phi$	111.6 ± 12.0	2.31	$4.95 \pm 0.53 \pm 0.59$	
	$\chi_{c2} \rightarrow \phi \phi$	217.9 ± 16.1	2.23	$10.55 \pm 0.78 \pm 1.22$	15.4 ± 3.0
	$\chi_{c0} o \phi \phi$			$8.00 \pm 0.35 \pm 0.80$	9.3 ± 2.0
Combined	$\chi_{c1} \rightarrow \phi \phi$			$4.30 \pm 0.23 \pm 0.49$	
	$\chi_{c2} \rightarrow \phi \phi$			$10.67 \pm 0.38 \pm 1.15$	15.4 ± 3.0
$\gamma 2(\pi^+\pi^-\pi^0)$	$\chi_{c0} \rightarrow \omega \omega$	991.1 ± 38.2	13.13	$9.53 \pm 0.37 \pm 1.11$	23 ± 7.0
	$\chi_{c1} ightarrow \omega \omega$	597.1 ± 28.8	13.23	$5.96 \pm 0.28 \pm 0.70$	
	$\chi_{c2} ightarrow \omega \omega$	762.4 ± 31.3	11.91	$8.90 \pm 0.36 \pm 1.08$	20.0 ± 7.0
$\gamma K^+ K^- \pi^+ \pi^- \pi^0$	$\chi_{c0} ightarrow \omega \phi$	76.0 ± 11.0	14.7	$1.18 \pm 0.17 \pm 0.15$	
	$\chi_{c1} ightarrow \omega \phi$	15.3 ± 4.1	16.2	$0.23 \pm 0.06 \pm 0.03$	
	$\chi_{c2} \rightarrow \omega \phi$	< 12.5	15.7	< 0.23	

•χ_{C1}→φφ, ωω decays are observed for the first time with surprisingly large branching. Is helicity selection rules applicable in this case?
 •The doubly OZI-suppressed decay χ_{CJ}→φω is observed for the first time
 •Other measured branchings are consistent with and more accurate then previous measurements

Study of $\chi_{cJ} \rightarrow K^+K^-p\overline{p}$

- Color Octer Mechanism disagrees with the measurements for some baryon-antibaryon χ_{cJ} decays (e.g. $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda}$)
- Only ground state baryons was observed in χ_{cJ} decays
- To test the COM predictions for P-wave charmonia decay further, measurements of χ_{cJ} excited baryon pair decays are needed
- The main aim of analysis is to find contribution of intermediate $\Lambda(1520)$ in K⁺K⁻pp final state

γK⁺K⁻pp candidate selected using PID info and 4C kinematic fit

Study of $\chi_{cJ} \rightarrow K^+K^-p\overline{p}$ at BES III Search for $\chi_{cJ} \rightarrow \Lambda(1520)\overline{\Lambda}(1520)$

signal area

Results of $\chi_{cJ} \rightarrow K^+K^-p\bar{p}$ at BESIII

BES III Preliminary

	χ_{c0}	χ_{c1}	χ_{c2}
$Br(\chi_{cJ} \to p\bar{p}K^+K^-) \times 10^{-4}$	$1.24 \pm 0.20 \pm 0.18$	$1.35 \pm 0.15 \pm 0.19$	$2.08 \pm 0.19 \pm 0.30$
$Br(\chi_{cJ} \to \bar{p}K^+\Lambda(1520) + c.c.) \times 10^{-4}$	$3.00 \pm 0.58 \pm 0.50$	$1.81 \pm 0.38 \pm 0.28$	$3.06 \pm 0.50 \pm 0.54$
$Br(\chi_{cJ} \to \Lambda(1520)\bar{\Lambda}(1520)) \times 10^{-4}$	$3.18 \pm 1.11 \pm 0.53$	< 1.00@90% C.L.	$5.05 \pm 1.29 \pm 0.93$
$Br(\chi_{cJ} \to p\bar{p}\phi) \times 10^{-5}$	$6.12 \pm 1.18 \pm 0.86$	< 1.82@90% C.L.	$3.04 \pm 0.85 \pm 0.43$

Main sources of systematic: tracking efficiency (~8%), PID(~8%), fiting procedure (0-9%), branchings (3-7%), mass windows cut (2-11%)

Summary

- The BES-3 experiment runs successfully, and already provided many interesting results
- Many the world best measurements in charmonium physics during last year, and a number of measurements were made for the first time
- Some of our results are quite unexpected
- Now it is turn of theorists to explain our findings
- Much more new exciting results from BES-3 are coming soon

BACKUP SLIDES

First publications of BESIII

- Charmonium Spectroscopy and Transitions
 - Measurements of h_c in ψ' decays(*PRL 104, 132002 (2010)*)
- Charmonium Decays
 - $\chi_{cJ} \rightarrow \pi^0 \pi^0$, $\eta \eta$ (*PRD 81*, 052005 (2010))
 - $\psi' \to \gamma \pi^0, \gamma \eta, \gamma \eta' (arXiv:1011.0885, PRL. 105, 261801 (2010))$
 - $\chi_{cJ} \rightarrow 4\pi^0 (arXiv:1011.6556, PRD 83, 012006 (2011))$
- Light Quark States
 - $a_0(980) f_0(980)$ mixing (*PRD 83, 032003 (2011*))
 - $\eta' \rightarrow \eta \pi + \pi \text{ matrix element } (arXiv:1012.1117, PRD 83, 012003 (2011))$
 - X(1860) in J/ $\psi \rightarrow \gamma$ (pp) (*Chinese Physics C 34, 4 (2010*))
 - X(1835) in J/ $\psi \rightarrow \gamma(\eta' \pi + \pi -)$ (*PRL 106, 072002 (2011*).)

BESIII Collaboration

Europe (8)

More then 300 physicist 48 institutions from 9 contries

$\chi_{cJ} \rightarrow K^+K^-pp$ at BESIII non-resonant contribution

4-body $\chi_{cJ} \rightarrow KKpp$

selected applying veto cuts on KK and Kp mass: •/M(pK⁻)-1.52| > 0.07 GeV/c2, •|M(K⁺p)-1.52| > 0.07 GeV/c2 •|M(K⁺K⁻) - 1.02| > 0.03 GeV/c

$$\begin{split} \chi_{cJ} &\longrightarrow K^+ K^- pp \text{ at BESIII} \\ \chi_{cJ} &\longrightarrow pK^+ \Lambda(1520) + \text{ c.c.} \\ \text{Separate analysys for } \chi c0 \; \chi c1, \; \chi c2 \; \text{ candidates} \\ \chi_{c0} : 3.365 \; \text{GeV/c2} < M(p\overline{p}K^+K^-) < 3.455 \; \text{GeV/c2} \\ \chi_{c1} : 3.490 \; \text{GeV/c2} < M(p\overline{p}K^+K^-) < 3.530 \; \text{GeV/c2} \\ \chi_{c2} : 3.530 \; \text{GeV/c2} < M(p\overline{p}K^+K^-) < 3.580 \; \text{GeV/c2} \\ + \; \Lambda \; \text{veto}, + \; \varphi \; \text{veto} \end{split}$$

Fit: BW x gauss, BG:2d-order polynomial

Similar procedure for $\chi_{cJ}\!\rightarrow\!p\overline{p}\phi$

31