Lepton flavor violation in charged leptons: a theory overview

Paride Paradisi

Physik-Department Technische Universität München

La Thuile 2011 La Thuile, Aosta Valley, Italy March 4th, 2011

Open questions

- Which is the underlying mechanism regulating the EWSB?
- Which is the connection between EWSB and flavor physics?
- O Are there new flavor symmetries beyind the puzzling fermion mass spectrum?
- are there new flavor violating interactions not governed by the SM Yukawas? That is, to which extent the MFV hypothesis is valid?
- O the new sources of CPV accounting for the BAU have an impact on flavor physics and/or EDMs?
- 6 Which is the role of flavor physics in the LHC era?
- Do we expect to understand the (SM and NP) flavor puzzles through the interplay of flavor physics and the LHC?

High energy vs. high intensity frontier

Flavour Physics in the LHC era

LHC [high pT]

A *unique* effort toward the high-energy frontier

[to determine the energy scale of NP]

A *collective* effort toward the high-intensity frontier [to determine the <u>flavour structure</u> of NP]

[Isidori @ LP07]

Lepton flavor violation in charged leptons: a theory over

Where to look for New Physics at the low energy?

- Processes very suppressed or even forbidden in the SM
 - FCNC processes $(\mu \to e\gamma, \tau \to \mu\gamma, B^0_{s,d} \to \mu^+\mu^-, K \to \pi\nu\bar{\nu})$
 - CPV effects in the electron/neutron EDMs, den...
 - ► FCNC & CPV in B_{s,d} decay/mixing & D mixing amplitudes
- Processes predicted with high precision in the SM
 - EWPO as Δρ, (g − 2)_μ....

► LU in
$$R_M^{e/\mu} = \Gamma(K(\pi) \to e\nu) / \Gamma(K(\pi) \to \mu\nu)$$

Experimental status

Brief status of Lepton Flavor Violation searches

Process	Expected 90% CL upper limit	3σ evidence reach		
$BF(\tau \rightarrow \mu \gamma)$	2.4-10-9	5.4-10-9		
$BF(\tau \rightarrow e \gamma)$	3.0-10-9	6.8-10-9		
$BF(\tau \to \ell\ell\ell)$	2.3-8.2-10-10	$1.2 - 4.0 \cdot 10^{-9}$		

Lusiani @ HQL10]

The NP "scale"

- Gravity $\implies \Lambda_{\text{Planck}} \sim 10^{18-19} \ {\rm GeV}$
- Neutrino masses $\implies \Lambda_{see-saw} \lesssim 10^{15} \ {\rm GeV}$
- Hierarchy problem: $m_h^{SM}(\Lambda_{NP}^2) \sim M_W \Longrightarrow \Lambda_{NP} \lesssim \text{TeV}$
- Dark Matter $\Longrightarrow \Lambda_{NP} \lesssim {
 m TeV}$
- BAU: evidence of CPV beyond SM
 - Electroweak Baryogenesis $\Longrightarrow \Lambda_{NP} \lesssim \text{TeV}$
 - ► Leptogenesis $\implies \Lambda_{\text{see}-\text{saw}} \lesssim 10^{15} \text{ GeV}$

↓ SM = effective theory at the EW scale

• Going BSM model-independently:

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{d \geq 5} \frac{C_{ij}^{(d)}}{\Lambda_{NP}^{d-4}} \ O_{ij}^{(d)}$$

• Neutrino Oscillation $\Rightarrow m_{\nu_i} \neq m_{\nu_j} \Rightarrow LFV$

• see-saw:
$$m_{\nu}=rac{(m_{\nu}^D)^2}{M_R}\sim eV, M_R\sim 10^{14-16}\Rightarrow m_{\nu}^D\sim m_{top}$$

- LFV transitions like $\mu \rightarrow e\gamma$ @ 1 loop with exchange of
 - W and ν in the SM framework (GIM)

$$Br(\mu
ightarrow e\gamma) \sim rac{m_
u^4}{M_W^4} \leq 10^{-50} \qquad m_
u \sim {
m eV}$$

• \tilde{W} and $\tilde{\nu}$ in the MSSM framework (SUPER-GIM)

$$Br(\mu o e\gamma) \sim rac{m_{
u}^{D\,4}}{ ilde{m}^4} \leq 10^{-11} \qquad m_{
u}^D \sim m_{top}$$

• LFV signals are undetectable (detectable) in the SM (MSSM)

∜

The NP "scale" & Supersymmetry

LFV in SUSY

Flavour universal SUSY breaking and yet large LFV from SUSY see-saw

SUSY see-saw superpotential (MSSM + RN)

$$W = h^{e} L e^{c} H_{1} + \frac{h^{\nu} L \nu^{c} H_{2}}{H_{2} + M_{B} \nu^{c} \nu^{c} + \mu H_{1} H_{2}},$$

$$\mathcal{M}_{\nu}=-\boldsymbol{h}^{\nu}\boldsymbol{M}_{R}^{-1}\boldsymbol{h}^{\nu}\boldsymbol{V}_{2}^{2},$$

$$M_{\tilde{\ell}}^2 = \begin{pmatrix} m_L^2 (1 + \delta_{LL}^{ij}) & (A - \mu t_\beta) m_\ell + m_L m_R \delta_{LR}^{ij} \\ (A - \mu t_\beta) m_\ell + m_L m_R \delta_{LR}^{ij}^{\dagger} & m_R^2 (1 + \delta_{RR}^{ij}) \end{pmatrix}$$

• If $h^e = h^e_{ij} \delta_{ij}$ and $M_R = (M_R)_{ij} \delta_{ij} \Rightarrow h^\nu \neq h^\nu_{ij} \delta_{ij}$ in general.

$$\delta^{ij}_{LL} pprox -rac{3}{8\pi^2}(h^
u h^{
u \dagger})_{ij} \ln rac{M_X}{M_R},$$

[Borzumati & Masiero, '86]

Paride Paradisi (TUM)

LFV in SUSY

LFV in SUSY

 h^{ν} is unknown \Rightarrow No model independent predictions for LFV

$$h^{\nu} = U_{\rm MNS}^{\star} \mathcal{D}_{\sqrt{\mathcal{M}_{\nu}}} \mathbf{R}^{T} \mathcal{D}_{\sqrt{M_{R}}} \frac{1}{v_{2}},$$

 $R^{\dagger}R = 1 \Rightarrow$ three angles and three phases

• ν_L & ν_R hierarchical (and R real)

$$rac{m{B}(\mu
ightarrow m{e} \gamma)}{m{B}(au
ightarrow \mu \gamma)} \sim rac{|m{U}_{m{e} 3}|^2}{m{B}(au
ightarrow \mu
u_ au ar{
u}_\mu)}$$

• ν_L hierarchical and ν_R degenerate (and R real)

$$rac{B(\mu
ightarrow e \gamma)}{B(au
ightarrow \mu \gamma)} \sim rac{|s_{12}c_{12}(m_{sol}/m_{atm}) + U_{e3}|^2}{B(au
ightarrow \mu
u_ au ar{
u}_\mu)}$$

$\mu ightarrow e \gamma$ and $au ightarrow \mu \gamma$ in SUSY see-saw

[Herrero et al., '06]

RG induced LFV interactions in SUSY GUTs

• SUSY SU(5) [Barbieri & Hall, '95]

$$(\delta^{\tilde{q}}_{LL})_{ij} \sim h^u h^{u\dagger}{}_{ij} \sim h^2_t V^{ik}_{CKM} V^{kj*}_{CKM}
ightarrow (\delta^{\tilde{\ell}}_{RR})_{ij} \simeq (\delta^{\tilde{q}}_{LL})_{ij}$$

• SUSY SU(5)+RN [Yanagida et al., '95]

$$(\delta^{ ilde{\ell}}_{LL})_{ij} \sim (h^{
u} h^{
u\dagger})_{ij} \qquad \& \qquad (\delta^{ ilde{\ell}}_{RR})_{ij} \sim (h^{u} h^{u\dagger})_{ij}$$

SUSY SU(5)+RN [Moroi, '00] & SO(10) [Chang, Masiero & Murayama, '02]

$$\sin heta_{\mu au} \sim rac{\sqrt{2}}{2} \Rightarrow (\delta^{ ilde{\ell}}_{LL})_{23} \sim 1 \Rightarrow (\delta^{ ilde{q}}_{RR})_{23} \sim 1$$

[Hisano, Nagai, Paradisi & Shimizu, '09]

${ m BR}(\mu \to e\gamma)$ in $SU(5)_{RN}$ and the LHC reach

hierarchical ν_L and N_R , $U_{e3} = 0.1$, $M_{N_3} = 10^{-13} \, \text{GeV}$

[Hisano, Nagai, Paradisi & Shimizu, '09]

The P-odd asymmetry in $\mu^+ ightarrow e^+ \gamma$ [Okada et al., '96]

• After $\mu^+
ightarrow e^+ \gamma$ will be (hopefully!) observed...

$$\frac{\mathrm{BR}(\ell_i \to \ell_j \gamma)}{\mathrm{BR}(\ell_i \to \ell_j \nu_i \bar{\nu}_j)} = \frac{48\pi^3 \alpha_{em}}{G_F^2} \left(|A_L^{\ell_i \ell_j}|^2 + |A_R^{\ell_i \ell_j}|^2 \right)$$

$$oldsymbol{A}(\mu^+
ightarrow oldsymbol{e}^+ \gamma) = rac{|oldsymbol{A}_L|^2 - |oldsymbol{A}_R|^2}{|oldsymbol{A}_L|^2 + |oldsymbol{A}_R|^2}$$

SUSY see-saw

$$A_{L}^{\mu e} = \frac{\alpha_2}{4\pi} \frac{t_{\beta}}{\tilde{m}^2} \frac{\delta_{\mu e}^{L}}{15} \qquad \qquad A_{R}^{\mu e} \simeq \frac{m_e}{m_{\mu}} A_{L}^{\mu e}$$

$$A_{L}^{\mu\theta} = \frac{\alpha_{2}}{4\pi} \frac{t_{\beta}}{\tilde{m}^{2}} \frac{\delta_{\mu\theta}^{L}}{15} \qquad \qquad A_{R}^{\mu\theta} = -\frac{\alpha_{Y}}{4\pi} \frac{t_{\beta}}{\tilde{m}^{2}} \frac{m_{\tau}}{m_{\mu}} \frac{\delta_{\mu\tau}^{L} \delta_{\tau\theta}^{R}}{30}$$

[Hisano, Nagai, Paradisi & Shimizu, '09]

SM vs. NP flavor puzzle

Froggat-Nielsen '79: Hierarchies from SSB of a Flavour Symmetry

$$\epsilon = rac{\langle \phi
angle}{M} \ll 1 \Rightarrow Y_{ij} \propto \epsilon^{(a_i + b_j)}$$

Non-abelian SU(3) SUSY flavour model [Ross, Velasco-S., Vives]

$$\begin{split} \delta_{d}^{LL} &\sim \begin{pmatrix} \cdot & \lambda^{5} & \lambda^{3} \\ \lambda^{5} & \cdot & \lambda^{2} \\ \lambda^{3} & \lambda & \cdot \end{pmatrix} \quad \delta_{d}^{RR} \sim \begin{pmatrix} \cdot & \lambda^{3} & \lambda^{2} \\ \lambda^{3} & \cdot & \lambda \\ \lambda^{2} & \lambda & \cdot \end{pmatrix} \\ \delta_{\ell}^{LL} &\sim \begin{pmatrix} \cdot & \frac{\lambda^{5}}{3} & \frac{\lambda^{3}}{3} \\ \frac{\lambda^{5}}{3} & \cdot & \lambda^{2} \\ \frac{\lambda^{3}}{3} & \lambda & \cdot \end{pmatrix} \quad \delta_{\ell}^{RR} \sim \begin{pmatrix} \cdot & \frac{\lambda^{3}}{3} & \frac{\lambda^{2}}{3} \\ \frac{\lambda^{3}}{3} & \cdot & \lambda \\ \frac{\lambda^{2}}{3} & \lambda & \cdot \end{pmatrix} \end{split}$$

Phenomenology of a SUSY SU(3) flavor models

- Yellow points satisfy $\Delta a_{\mu} > 10^{-9}$
- Scan ranges: $m_0 < 2$ TeV, $M_{1/2} < 1$ TeV, $|A_0| < 3m_0$, $5 < \tan \beta < 55$

[Altmannshofer, Buras, Gori, Paradisi and Straub, '09]

$${\it BR}(\ell_i
ightarrow \ell_j \gamma) \ pprox \ \left[rac{\Delta a_\mu}{20 imes 10^{-10}}
ight]^2 imes \left\{ egin{array}{c} 1 imes 10^{-4} & |\delta_{LL}^{+2}|^2 & [\mu
ightarrow e] \ 2 imes 10^{-5} & |\delta_{LL}^{23}|^2 & [au
ightarrow \mu] \end{array}
ight\}$$

- Ratios of BR for different flavor transitions
- Ratios of BR for different processes

ratio	LHT	MSSM	SM4	
$\frac{Br(\mu \rightarrow eee)}{Br(\mu \rightarrow e\gamma)}$	0.021	$\sim 2 \cdot 10^{-3}$	0.06 2.2	
$\frac{Br(\tau \rightarrow eee)}{Br(\tau \rightarrow e\gamma)}$	0.04 0.4	$\sim 1 \cdot 10^{-2}$	0.072.2	
$\frac{Br(\tau \to \mu \mu \mu)}{Br(\tau \to \mu \gamma)}$	0.040.4	$\sim 2 \cdot 10^{-3}$	0.06 2.2	
$\frac{Br(\tau \rightarrow e\mu\mu)}{Br(\tau \rightarrow e\gamma)}$	0.04 0.3	$\sim 2 \cdot 10^{-3}$	0.03 1.3	
$\frac{Br(\tau \rightarrow \mu ee)}{Br(\tau \rightarrow \mu \gamma)}$	0.04 0.3	$\sim 1 \cdot 10^{-2}$	0.04 1.4	
$\frac{Br(\tau \rightarrow eee)}{Br(\tau \rightarrow e\mu\mu)}$	0.82	~ 5	1.52.3	
$\frac{Br(\tau \rightarrow \mu \mu \mu)}{Br(\tau \rightarrow \mu ee)}$	0.71.6	\sim 0.2	1.4 1.7	
$\frac{\mathrm{R}(\mu\mathrm{Ti}\rightarrow e\mathrm{Ti})}{Br(\mu\rightarrow e\gamma)}$	$10^{-3} \dots 10^{2}$	$\sim 5\cdot 10^{-3}$	10 ⁻¹² 26	

[Buras et al., '07, '10]

 $\mu - e$ universality in $K \rightarrow l \nu$

$$R_{K} = \frac{\Gamma(K \to e\nu_{e}) + \Gamma(K \to e\nu_{\mu}) + \Gamma(K \to e\nu_{\tau})}{\Gamma(K \to \mu\nu_{\mu}) + \Gamma(K \to \mu\nu_{e}) + \Gamma(K \to \mu\nu_{\tau})}$$

- Violations of LU in CCI can be classified as $(R_K/R_K^{SM} = 1 + \Delta r_{KNP}^{e-\mu})$
 - i) Corrections to (V−A) × (V−A) interaction through Wℓνℓ vertex correction induced by a loop of NP particles

$$\Delta r_{SUSY}^{e-\mu} \sim \frac{\alpha_2}{4\pi} \left(\frac{\tilde{m}_{\mu}^2 - \tilde{m}_{e}^2}{\tilde{m}_{\mu}^2 + \tilde{m}_{e}^2} \right) \frac{m_W^2}{M_{SUSY}^2} \le 10^{-4}$$

▶ ii) New Lorentz Structures, i.e. scalar CCI with $H\ell\nu \sim m_{\ell} \tan \beta$.

	$(R_{K}^{e/\mu})_{exp.} \ [10^{-5}]$
PDG 2006	$\textbf{2.45} \pm \textbf{0.11}$
KLOE '09.	$\textbf{2.477} \pm \textbf{0.01}$
NA62 '11.	2.487 ± 0.013
SM prediction (Cirigliano & Rossel '07)	$\textbf{2.477} \pm \textbf{0.001}$

 R_{K}^{LFV} in SUSY

$$R_{K}^{LFV} = \frac{\sum_{i} K \to e\nu_{i}}{\sum_{i} K \to \mu\nu_{i}} \simeq \frac{\Gamma_{SM}(K \to e\nu_{e}) + \Gamma(K \to e\nu_{\tau})}{\Gamma_{SM}(K \to \mu\nu_{\mu})} , \quad i = e, \mu, \tau$$

$$eH^{\pm}
u_{ au}
ightarrow rac{g_2}{\sqrt{2}} rac{m_{ au}}{M_W} \Delta_R^{31} an^2 eta \ \Delta_R^{31} \sim rac{lpha_2}{4\pi} \delta_{RR}^{31}$$

 $\Delta_R^{31} \sim 5 \cdot 10^{-4} t_\beta = 40 M_{H^{\pm}} = 500 \text{GeV}$

$$\Delta r_{K\,SUSY}^{e-\mu} \simeq \left(\frac{m_K^4}{M_{H^\pm}^4}\right) \left(\frac{m_\tau^2}{m_e^2}\right) |\Delta_R^{31}|^2 \tan^6 \beta \approx 10^{-2}$$

 $\Delta r_{K\,SUSY}^{e-\mu} pprox 10^{-2} \implies Br^{th.(exp.)}(\tau
ightarrow eX) \le 10^{-10(-7)}$

[Masiero, Paradisi and Petronzio, '05]

Lepton flavor violation in charged leptons: a theory ove

"DNA-Flavour Test"

SUSY model	GMSSM	AC	RVV2	AKM	δLL	FBMSSM	
$S_{\phi K_S}$	***	***	••		***	***	
$A_{ ext{CP}}(B o X_{ extsf{s}} \gamma)$	***				***	***	SuperB
$B ightarrow K^{(*)} u ar{ u}$	••						
$ au ightarrow \mu \gamma$	***	***	***		***	***	
$D^0-ar{D}^0$	***	***					SuperB
$A_{7,8}(B ightarrow K^*\mu^+\mu^-)$	***				***	***	VS.
$A_9(B o K^* \mu^+ \mu^-)$	***						<i>LHCb</i>
$\mathcal{S}_{\psi\phi}$	***	***	***	***			<i>LHCb</i>
$B_{s} ightarrow \mu^{+} \mu^{-}$	***	***	***	***	***	***	
ϵ_K	***		***	***			
$K^+ ightarrow \pi^+ u ar{ u}$	***						
$K_L ightarrow \pi^0 u ar u$	***						
$\mu ightarrow oldsymbol{ heta}\gamma$	***	***	***	***	***	***	
$\mu + N ightarrow e + N$	***	***	***	***	***	***	
d _n	***	***	***	***	••	***	
d _e	***	***	***	••		***	
$\left(g-2 ight)_{\mu}$	***	***	***	••	***	***	

[Altmannshofer et al., '09]

Open questions

- **1** Which is the underlying mechanism regulating the EWSB?
- 2 Which is the connection between EWSB and flavor physics?
- In the symmetries of the sy
- Are there new flavor violating interactions not governed by the SM Yukawas? That is, to which extent the MFV hypothesis is valid?
- O the new sources of CPV accounting for the BAU have an impact on flavor physics and/or EDMs?
- 6 Which is the role of flavor physics in the LHC era?
- Do we expect to understand the (SM and NP) flavor puzzles through the interplay of flavor physics and the LHC?

8

Evidence of LFV in charged leptons would tell us a lot!