P. Bernardini - Università and INFN, Lecce (Italy) On behalf of the ARGO-YBJ Collaboration

Les Rencontres de Physique de la Vallée d'Aoste La Thuile - February 28, 2011

Cosmic Rays in the TeV region with the ARGO-YBJ detector

Outline

\checkmark Detector features and performance
\checkmark Gamme Astrenemy
\checkmark Cosmic Rays (CR) Moon shadow \& antiproton flux
Anisotropies
Light component spectrum
Proton cross-section
Shower structure
 argo laboratory of ybj cosmic Ray Ol

The YangBaJing Cosmic Ray Observatory (Tibet, China) Altitude 4300 m a.s.I.

Longitude $90^{\circ} 31^{\prime} 50^{\prime \prime}$ East Latitude $30^{\circ} 06^{\prime} 38^{\prime \prime}$ North

II \%

Astrophysical Radiation with Ground-based Observatory at YangBaJing

\checkmark Layer of Resistive Plate Chambers (RPC)
\checkmark Active area :
central carpet sampling guard-ring
\checkmark Data taking : since July 2006 since November 2007
~ $5600 \mathrm{~m}^{2}$
$\sim 1000 \mathrm{~m}^{2}$
with the central carpet with the guard-ring

Analog charge read-out (big-pads) is working

Duty cycle > 85\%
 Field of View ~ 2 sr

Shower mode

Space pixel: single strip ($7 \times 62 \mathrm{~cm}^{2}$)
Time pixel: pad $\left(56 \times 62 \mathrm{~cm}^{2}\right)$ is the OR of 8 strips, with a resolution of $\sim 1.8 \mathrm{~ns}$

Dynamical range for protons by means of pads, strips and big-pads :

$$
\sim 1-10^{4} \mathrm{TeV}
$$

Detection of Extensive Air Showers (direction, size, core ...)
Aims : cosmic-ray physics (threshold ~ 1 TeV)
VHE γ-astronomy (threshold ~ 300 GeV)

Moon shadow

Analysis cuts: $N_{\text {HIT }}>100$ and $\theta<50^{\circ}$

≈ 9 standard deviations / month

The deficit surface is the convolution of the Point Spread Function of the detector and the widespread Moon disc

$$
R M S \simeq \sigma \sqrt{1+\left(\frac{R}{2 \sigma}\right)^{2}}
$$

Angular resolution vs hit multiplicity (angular resolution \propto deficit depth)

Westward shadow shift

$$
\Delta \alpha \approx 1.57^{\circ} \mathrm{Z} / \mathrm{E}(\mathrm{TeV})
$$

Looking for an East deficit as antiproton signal

Maximum Likelihood

+ Feldman \& Cousins
\triangle Upper limit on the antiproton flux

Large scale CR anisotropy

Large statistics and wide Field of View (>2sr) allow the 2-D measurement of the anisotropy

ARGO-YBJ DATA (2008 and 2009) : 130×10^{9} events ($E_{50}=1.1 \mathrm{TeV}$)

Similar results observed by Tibet AS- γ, Milagro, SuperKamiokande and IceCube at higher energies

Compton-Getting, nearby sources, magnetic field... ?

Medium scale anisotropy of CR

Smaller angular features (medium scale) are visible after removing large angular features (large scale)

These anisotropies must be studied in order to probe the magnetic field in the Earth neighborhood as well as the distribution of CR sources

Measurement of the light-component ($\mathrm{p}+\mathrm{He}$) spectrum of primary CRs in the range $5-250 \mathrm{TeV}$ via a Bayesian unfolding procedure

1) Estimate of $P\left(N_{H I T} \mid E\right)$ by means of simulation
2) Assume P(E)
3) Apply Bayes theorem $\rightarrow P\left(E \mid N_{\text {HIT }}\right)$
4) Estimate of $N(E)=N\left(N_{H I T}\right) P\left(E \mid N_{\text {HIT }}\right)$
5) Calculate new P(E)

6) Repeat steps 3-5 up to convergence
7) Spectrum $N(E)$

Bayes theorem

$$
P\left(E \mid N_{H I T}\right)=\frac{P\left(N_{\text {HIT }} \mid E\right) P(E)}{P\left(N_{H I T}\right)}
$$

For the first time direct and ground-based measurements overlap for a wide energy range.
Thus the cross-calibration of the experiments is possible

Proton-air cross section measurement

Use the shower frequency vs $(\sec \theta-1)$

$$
I(\theta)=I(0) \cdot e^{-\frac{h_{0}}{\Lambda}(\sec \theta-1)}
$$

for fixed energy and shower age
The length Λ is not the p-interaction length mainly because of collision inelasticity, shower fluctuations and detector resolution.

It has been shown that $\Lambda=k \lambda_{\text {int }}$, where k is determined by simulations and depends on:

- hadronic interactions
- detector features and location (atm. depth)
- actual set of experimental observables
- analysis cuts
- energy ...

Then:

$$
\sigma_{\mathrm{p}-\mathrm{Air}}(\mathrm{mb})=2.4 \times 10^{4} / \lambda_{\mathrm{int}}\left(\mathrm{~g} / \mathrm{cm}^{2}\right)
$$

Take care of shower fluctuations

- Constraint on $X_{D O}=X_{\text {det }}-X_{0}$ or

$$
X_{D M}=X_{\text {det }}-X_{\max }
$$

- Select deep showers

$$
\text { (large } \left.X_{\max } \text {, i.e. small } X_{D M}\right)
$$

- Exploit detector features (spacetime pattern) and altitude (depth)

Data selection

$>$ Event selection based on:
(a) "shower size" on detector ($\mathrm{N}_{\text {strip }}$)
(b) core reconstructed in a fiducial area ($64 \times 64 \mathrm{~m}^{2}$)
(c) constraints on strip density ($>0.2 \mathrm{~m}^{-2}$ within R_{70}) and shower extension $\left(\mathrm{R}_{70}<30 \mathrm{~m}\right)$
$\mathrm{N}_{\text {strip }}$ is used to get different energy sub-samples
R_{70} is the radius of circle including 70\% of hits

Full Monte Carlo simulation

Showers : Corsika

Inter. Models : QGSJET-I QGSJET-II SYBILL

Detector : GEANT 3

Experimental data (5 strip multiplicity bins)

$$
I(\theta)=I_{0} \exp \left[-\frac{h_{0}}{\Lambda}(\sec \theta-1)\right]
$$

$$
I(\theta)=I_{0} \exp \left[-\frac{h_{0}}{\Lambda}(\sec \theta-1)\right]
$$

$$
\begin{aligned}
& \lambda_{\mathrm{INT}}=\Lambda / k \\
& \sigma_{p-\text { Air }}[\mathrm{mb}]=2.4 \times 10^{4} / \lambda_{\mathrm{INT}}\left[\mathrm{~g} / \mathrm{cm}^{2}\right]
\end{aligned}
$$

$\Delta N_{\text {strip }}$	$\log (E / \mathrm{eV})$	$k_{Q G S J E T-I}$	$k_{Q G S J E T-I I .03}$	$k_{S I B Y L L-2.1}$	k
$500 \div 1000$	$12.6=0.3$	$1.98 \pm 0.06 \pm 0.05$	$1.84=0.14 \pm 0.05$	$1.87 \pm 0.08 \pm 0.04$	$1.93 \pm 0.05 \pm 0.06$
$1500 \div 2000$	$13.0=0.2$	$1.59 \pm 0.03 \pm 0.04$	$1.75=0.12 \pm 0.04$	$1.76 \pm 0.06 \pm 0.04$	$1.63 \pm 0.03 \pm 0.08$
$3000 \div 4000$	$13.3=0.2$	$1.69 \pm 0.05 \pm 0.03$	$1.63=0.13 \pm 0.03$	$1.72 \pm 0.05 \pm 0.03$	$1.70 \pm 0.03 \pm 0.04$
$5000 \div 8000$	$13.6=0.2$	$1.74 \pm 0.05 \pm 0.03$	$1.97=0.17 \pm 0.04$	$1.91 \pm 0.05 \pm 0.03$	$1.84 \pm 0.03 \pm 0.10$
>8000	$13.9=0.3$	$2.04 \pm 0.06 \pm 0.05$	$2.23=0.19 \pm 0.05$	$2.01 \pm 0.05 \pm 0.05$	$2.03 \pm 0.04 \pm 0.10$

Correction factor for
 heavier primaries

Glauber theory applied
(model differences in the sys errors)

$\Delta N_{\text {strip }}$	η	$\sigma_{p-\text { air }}(\mathrm{mb})$	$\sigma_{p-p}(\mathrm{mb})$
$500 \div 1000$	$1.00 \pm 0.04 \pm 0.01$	$272 \pm 13 \pm 9$	$43 \pm 3 \pm 5$
$1500 \div 2000$	$1.00 \pm 0.03 \pm 0.01$	$295 \pm 10 \pm 14$	$48 \pm 3 \pm 6$
$3000 \div 4000$	$0.99 \pm 0.04 \pm 0.01$	$318 \pm 15 \pm 8$	$54 \pm 4 \pm 6$
$5000 \div 8000$	$0.98 \pm 0.04 \pm 0.03$	$318 \pm 15 \pm 20$	$56 \pm 4 \pm 7$
>8000	$0.95 \pm 0.04 \pm 0.04$	$54 \pm 4 \pm 8$	

Proton-air cross section

Phys. Review D 80 (2009) 092004

Total p-p cross section Phys. Review D 80 (2009) 092004

Shower: features

The number of pixels, the time resolution and the full coverage allow to "see" the showers with unprecedented details

Conical shape in small shower

Studies on the shower time structure

Improvements with the analog readout (real events)

Multicore real event

Analog

Lateral Distribution Function

distance from the core (m)

Unprecedent

With the analog data the LDF can be studied without saturation near the core
\checkmark Better resolution on $X_{D M}$ and lower systematics on the cross section measurement
\checkmark Better energy estimate and shower reconstruction

Looking for observable quantities to make crucial test on hadronic interaction models

Conclusions

\checkmark ARGO-YBJ detector (central carpet + guard ring) is taking data since November 2007
\checkmark Sky survey in VHE gamma band is going on
\checkmark Many results on CR physics

- p-air and p-p cross section
- large and medium scale anisotropies
- Moon (and Sun) shadow
- limit on anti-proton flux
- spectrum of CR light-component (Bayesian method)
\checkmark Improvement of the CR studies (new analyses, analog read-out)
- p-p cross section up to PeV
- standard estimate of the CR flux
- study on the lateral distribution very close to the core
- test on hadronic interactions looking at shower time-structure, lateral distribution and at multi-core events

BUFFER SLIDES

Detector Stability

event rate variations

$$
\pm 0.5 \%
$$

after correction for barometric effects

RPC performance and linearity range

γ-astronomy

Many results on long term variabilities correlation with X -band spectra ...

The displacement of the Sun shadow is a good measurement of the IMF, especially in this particular quiet phase

$$
\text { (23 th }-24^{\text {th }} \text { cycle) }
$$

The Sun shadow to explore the solar magnetic field

Medium scale anisotropy of CR

Smaller angular features (medium scale) are visible after removing large angular features (large scale)

Possible explanations:
Heliospheric tail
Karapetyan, Astrop. Phys.

$$
33 \text { (2010) } 146
$$

Lazarian \& Desiati, ApJ.

$$
722 \text { (2010) } 188
$$

IS magnetic field turbulence Malkov et al, arXiv:1005.1312

Galactic CR accelerator (Geminga ...)
Salvati \& Sacco, A\&A 485 (2008) 527 Drury \& Aharonian, Astrop. Phys. 29 (2008) 420
Salvati, A\&A 513 (2010) A28

Tibet AS γ

M. Amenomori et.al. Science, 2006

Measurement of the light-component ($\mathrm{p}+\mathrm{He)}$ spectrum of primary CRs in the range 5-250 TeV via a Bayesian unfolding procedure

```
strip multiplicity (M)
    vs energy
```


1) Estimate of $P(M \mid E)$ by means of simulation
2) Iterative procedure

Apply the Bayes Theorem
Assume a starting
value for $\mathbf{P}(E)$

$P(E)=\frac{P(M \mid E) P(E)}{P(M)}$

$\sum_{E^{\prime}} N\left(E^{\prime}\right)$ | $N(E)=N(M) P(E \mid M)$ |
| :---: |
| Devaluate $\mathbf{P}(E)$ |

The position of the shower maximum (and its rms)

Cuts in-dependence on the zenith angle

No significant zenith angle dependence below 30 degrees. A slight shift might be seen above 40 degrees.

In this analysis we stop at 40 degrees

MC vs DATA

The distributions of the measured quantities before and after the analysis cuts are in good agreement with the simulation

The effects of the analysis cuts are consistent (at each step) with the MC estimate

Heavy primaries contribution

Hoerandel AP 19 (2003) 193

 taken as reference.JACEE and RUNJOB for the evaluation of systematic error

$$
\frac{d N}{d E}=\Phi(E)=\Phi_{Z}^{0} \cdot\left(\frac{E}{T e V}\right)^{-\gamma_{z}}
$$

Table 1
Absolute flux $\phi_{Z}^{0}\left(\left(\mathrm{~m}^{2} \mathrm{srs} \mathrm{TeV}\right)^{-1}\right)$ at $E_{0}=1 \mathrm{TeV} / n u c l e u s$ and spectral index γ_{z} of cosmic-ray elements

Absolute flux $\Phi_{Z}\left(\left(\mathrm{~m}^{2} \text { sr s TeV }\right)^{-1}\right)$ at $E_{0}=1 \mathrm{TeV} /$ nucleus and spectral index γ_{Z} of cosmic-ray elements						
Z		Φ_{Z}^{0}	$-\gamma_{Z}$	Z		Φ_{Z}^{0}
1^{a}	H	8.73×10^{-2}	2.71	47^{c}	Ag	4.54
2^{a}	He	5.71×10^{-2}	2.64	48^{c}	Cd	6.30
3^{b}	Li	2.08×10^{-3}	2.54	49^{c}	In	1.61
4^{b}	Be	4.74×10^{-4}	2.75	50^{c}	Sn	7.15
5^{b}	B	8.95×10^{-4}	2.95	51^{c}	Sb	2.03
6^{b}	C	1.06×10^{-2}	2.66	52^{c}	Te	9.10
7^{b}	N	2.35×10^{-3}	2.72	53^{c}	I	1.34
8^{b}	O	1.57×10^{-2}	2.68	54^{c}	Xe	5.74
9^{b}	F	3.28×10^{-4}	2.69	55^{c}	Cs	2.79
10^{b}	Ne	4.60×10^{-3}	2.64	56^{c}	Ba	1.23

Systematics

Effect of the atmospheric pressure at the level of 1%

$$
h_{0}{ }^{\text {MC }} / h_{0}{ }^{\text {real }}=0.988 \pm 0.007
$$

Heavy primaries contribution
Horandel, Astr. Phys. 19 (2003) 193 as reference JACEE and RUNJOB to estimate the errors

Interaction models
The spread among the models (QGSJET-I, QGSJET-II.03, SIBYLL 2.1) has been used in order to have a conservative estimate of the associated uncertainties

Next steps in the cross section analysis

- Use the analog RPC charge readout to extend the Energy range
- Better estimate of systematics

Improvements are expected from:

(a) More detailed informations on the shower time structure, longitudinal development and lateral density profile (LDF)
(b) Better constraints on shower $\operatorname{Xmax}(\rightarrow$ lower systematics)
... also given by the RPC charge information

Shower front time structure

Look for detectable differences among various hadint models and data

Look for correlations with Xmax

1 PeV simulated event

Shower front time structure

New observables are being studied, mainly shape and width, and their correlation with the longitudinal shower development

Multicore events

- They are correlated to large p_{T} jets
- Multicore γ-hadron family events in mountain emulsion experiments
- Events with $\chi_{12}=\sqrt{E_{1} E_{2}} r_{12} \geq 1000 \mathrm{TeVcm}$ still not explained by our present knowledge

Z. Cao et al., Phys. Rev. D,v56 1997,7361-7375

Exotic multicore events

PHYSICAL REVIEW D

VOLUME 52, NUMBER 5

Alignment in $\boldsymbol{\gamma}$-hadron families of cosmic rays
V.V. Kopenkin, ${ }^{1}$ A.K. Managadze, ${ }^{1}$ I.V. Rakobolskaya, ${ }^{1,2}$ and T.M. Roganova ${ }^{1}$
${ }^{1}$ Institute of Nuclear Physics, Moscow State University, Moscow 119899, Russia ${ }^{2}$ Department of Physics, Stanford University, Stanford, California 94305 (Received 8 August 1994)
The alignment of the main fluxes of energy in a target plane is found in families of cosmic ray particles detected in deep lead x-ray chambers. The fraction of events with alignment is unexpectedly large for families with high energy and a large number of hadrons. This can be considered as evidence for the existence of coplanar scattering of secondary particles in the interaction of particles with superhigh energy, $E_{0} \gtrsim 10^{16} \mathrm{eV}$. Data analysis suggests that the production of most aligned groups occurs slightly above the chamber and is characterized by a coplanar scattering and quasiscaling spectrum of secondaries in the fragmentation region. The most elaborated hypothesis for the explanation of the alignment is related to the quark-gluon string rupture. However, the problem of the theoretical interpretation of our results still remains open.

FIG. 2. An example of the target diagram with energy distinguished cores for the event with alignment (the family $\mathrm{Pb}-6) . \lambda_{4}=0.95$. Figures in the plot stand for energy in TeV (already multiplied by 3 for hadrons). EDC: (5) is the halo of electromagnetic origin; is the hadronic halo; \oplus are the high energy hadrons; • are the family γ quanta; + are the hadrons of the family

1 SEPTEMBER 1995

Figure 2: Samples of core distributions for PYTHIA simulated events with $E_{\Sigma}^{\mathrm{thr}}=10 \mathrm{PeV}$ and $\lambda_{8}>0.8$. The size of spots is proportional to their enorgy (except for the central spot which is not to scale).

