Scalar Dark Matter: A revision of the inert doublet model

Laura Lopez Honorez

Service de Physique Théorique - Université Libre de Bruxelles

based on:

A new viable region of the inert doublet model: JCAP 1101:002 The inert doublet model of dark matter revisited: JHEP 1009:046

in collaboration with C. Yaguna

Les Rencontres de Physique de la Vallée d'Aoste La Thuile 2011 - Italy

Laura Lopez Honorez (ULB)

Revision of the IDM

Minimal DM spirit : SM + extra $SU(2)_L$ doublet see Cirelli *et* all '05-'09

- DM = neutral member of the extra doublet Higgs : $H_1 \rightsquigarrow h$ and DM : $H_2 \rightsquigarrow H_0, A_0, H^{\pm}$
- stability \rightsquigarrow extra Z_2 symmetry SM \rightarrow SM, $H_1 \rightarrow H_1$ and $H_2 \rightarrow -H_2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

Minimal DM spirit : SM + extra SU(2)_L doublet see Cirelli et all '05-'09

- DM = neutral member of the extra doublet Higgs : $H_1 \rightsquigarrow h$ and DM : $H_2 \rightsquigarrow H_0, A_0, H^{\pm}$
- stability \rightarrow extra Z_2 symmetry SM \rightarrow SM, $H_1 \rightarrow H_1$ and $H_2 \rightarrow -H_2$

Possible Interactions

- (co)annihilation through *known* $SU(2)_L \times U(1)$ gauge bosons exchange
- quartic coupling λ_i to Higgs H_1

 $\lambda_{3}|H_{1}|^{2}|H_{2}|^{2} + \lambda_{4}|H_{1}^{\dagger}H_{2}|^{2} + \frac{\lambda_{5}}{2}\left[(H_{1}^{\dagger}H_{2})^{2} + h.c.\right]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

Minimal DM spirit : SM + extra SU(2)_L doublet see Cirelli et all '05-'09

- DM = neutral member of the extra doublet Higgs : $H_1 \rightsquigarrow h$ and DM : $H_2 \rightsquigarrow H_0, A_0, H^{\pm}$
- stability \rightsquigarrow extra Z_2 symmetry SM \rightarrow SM, $H_1 \rightarrow H_1$ and $H_2 \rightarrow -H_2$

Possible Interactions

- (co)annihilation through *known* SU(2)_L × U(1) gauge bosons exchange
- quartic coupling λ_i to Higgs H_1

$$\frac{1}{2}\left(\lambda_{H_0}H_0^2 + \lambda_{A_0}A_0^2 + 2\lambda_{H_c}H^+H^-\right)\left(2\nu_0h + h^2\right)$$

Minimal DM spirit : SM + extra $SU(2)_L$ doublet see Cirelli et all '05-'09

- DM = neutral member of the extra doublet Higgs : $H_1 \rightsquigarrow h$ and DM : $H_2 \rightsquigarrow H_0, A_0, H^{\pm}$
- stability \rightarrow extra Z_2 symmetry SM \rightarrow SM, $H_1 \rightarrow H_1$ and $H_2 \rightarrow -H_2$

Possible Interactions

- (co)annihilation through *known* $SU(2)_L \times U(1)$ gauge bosons exchange
- quartic coupling λ_i to Higgs H_1

$$\frac{1}{2}\left(\lambda_{H_0}H_0^2 + \lambda_{A_0}A_0^2 + 2\lambda_{H_c}H^+H^-\right)\left(2\nu_0h + h^2\right)$$

Here we take H_0 as the LZ₂P and $\lambda_L \equiv \lambda_{H_0}$

1) $\begin{array}{c}
M^{2} \\
\mu_{2}^{2} \\
\mu_{2}^{2} \\
\lambda_{H_{c}} \equiv \lambda_{3}/2 \\
\lambda_{H_{0},A_{0}} \equiv (\lambda_{3} + \lambda_{4} \pm \lambda_{5})/2
\end{array}$

 $m_{\chi}^{2} = \mu_{2}^{2} + \lambda_{\chi} v_{0}^{2}$

Introduction

Inert doublet model parameter space

• $m_{H_0} \lesssim m_W$: GeV range (~ 10 - 80 GeV):

 $H_0H_0 \rightarrow h^* \rightarrow \bar{f}f$ and $H_0A_0 \rightarrow Z^* \rightarrow \bar{f}f$

Barbieri PRD06, LLH JCAP06, Gustafsson PRL07, Cao PRD07, Andreas JCAP08,...

LARGE MASS GAP DUE TO EFFICIENT WW AND ZZ ANNIHILATION

• $m_{H_0} \gg m_W$: TeV range ($\gtrsim 530 \text{ GeV}$): $H_0H_0 \rightarrow ZZ, WW, hh$ and coannihil into bosons

Cirelli NPB06, Hambye JHEP09

Introduction

Inert doublet model parameter space

• $m_{H_0} \lesssim m_W$: GeV range (~ 10 - 80 GeV):

 $H_0H_0 \rightarrow h^* \rightarrow \bar{f}f$ and $H_0A_0 \rightarrow Z^* \rightarrow \bar{f}f$

Barbieri PRD06, LLH JCAP06, Gustafsson PRL07, Cao PRD07, Andreas JCAP08,...

Significantly affected by 3bdy annihilation : $H_0H_0 \rightarrow WW^* \rightarrow W\bar{f}f'$

LARGE MASS GAP DUE TO EFFICIENT WW AND ZZ ANNIHILATION

• $m_{H_0} \gg m_W$: TeV range ($\gtrsim 530 \text{ GeV}$): $H_0H_0 \rightarrow ZZ, WW, hh$ and coannihil into bosons

Cirelli NPB06, Hambye JHEP09

Introduction

Inert doublet model parameter space

• $m_{H_0} \lesssim m_W$: GeV range (~ 10 - 80 GeV):

 $H_0H_0 \to h^* \to \bar{f}f$ and $H_0A_0 \to Z^* \to \bar{f}f$

Barbieri PRD06, LLH JCAP06, Gustafsson PRL07, Cao PRD07, Andreas JCAP08,...

Significantly affected by 3bdy annihilation : $H_0H_0 \rightarrow WW^* \rightarrow W\bar{f}f'$

• Above *W*-threshold : cancellations

 $H_0H_0 \rightarrow WW \text{ vs } H_0H_0 \rightarrow h \rightarrow WW$

• $m_{H_0} \gg m_W$: TeV range ($\gtrsim 530 \text{ GeV}$): $H_0 H_0 \rightarrow ZZ, WW, hh$ and coannihil into bosons

Cirelli NPB06, Hambye JHEP09

Extra contributions from 3 body annihilations

Analysis for fixed parameters

based on:

A new viable region of the inert doublet model: JHEP 1009:046

2-3 body annihilation cross section near m_W threshold

2-3 body annihilation cross section near m_W threshold

2-3 body annihilation cross section near m_W threshold

- σv_{2bdy} : higgs mediated,
 → suppressed by Yukawa, m_h
- $\sigma v_{3bdy} = \sigma v(WW^*)$ \rightsquigarrow high multiplicity \rightsquigarrow gauge unsuppressed

 $\rightsquigarrow \sigma v_{2bdy}$ vs σv_{3bdy} depends on m_{H^0}, m_h, λ_L sign and amplitude

2-3 body annihilation cross section near m_W threshold

- σv_{2bdy} : higgs mediated,
 → suppressed by Yukawa, m_h
- σv_{3bdy} = σv(WW*)
 → high multiplicity
 → gauge unsuppressed

 $\sim \sigma v_{2bdy}$ vs σv_{3bdy} depends on m_{H^0}, m_h, λ_L sign and amplitude

Comparing 2-3 body relic density

• roughly $\Omega_{dm} \propto 1/\langle \sigma \mathbf{v} \rangle$ with $\langle \sigma \mathbf{v} \rangle = \langle \sigma \mathbf{v} (2\text{-body}) \rangle + \langle \sigma \mathbf{v} (WW^*) \rangle$

• We expect

 $\Omega_{dm}(3\text{-body}) \lesssim \Omega_{dm}(2\text{-body})$

Comparing 2-3 body relic density

• roughly $\Omega_{dm} \propto 1/\langle \sigma \mathbf{v} \rangle$ with $\langle \sigma \mathbf{v} \rangle = \langle \sigma \mathbf{v} (2\text{-body}) \rangle + \langle \sigma \mathbf{v} (WW^*) \rangle$

- We expect $\Omega_{dm}(3\text{-body}) \lesssim \Omega_{dm}(2\text{-body})$
 - → confirmed numerically using modified micrOMEGAs

 \sim 3-body final states significantly affect predictions for Ω_{dm}

12

★ ∃ > < ∃ >

Extra contributions from 3 body annihilations

Parameters for $\Omega_{H_0} = \Omega_{dm}^{WMAP}$

based on:

A new viable region of the inert doublet model: JHEP 1009:046

Viable parameter space

Derive the $\lambda_L - m_{H^0}$ compatible with $\Omega_{dm}^{WMAP} h^2 = 0.11$

Going from 2bdy only to 2+3bdy with or without coannihilations :

3 × 4 3 ×

1= 200

Viable parameter space

Derive the $\lambda_L - m_{H^0}$ compatible with $\Omega_{dm}^{WMAP} h^2 = 0.11$

Going from 2bdy only to 2+3bdy with or without coannihilations :

• correct $|\lambda_L|$ is reduced up to $\sim \mathcal{O}(10)$.

• W-threshold at lower m_{H^0}

- 2bdy settled by the onset of W^+W^- annihilations
- 2+3bdy depends on *WW** annihilations

Viable parameter space

Derive the $\lambda_L - m_{H^0}$ compatible with $\Omega_{dm}^{WMAP} h^2 = 0.11$

Going from 2bdy only to 2+3bdy with or without coannihilations :

 \rightarrow rather generic feature of the Inert doublet model independently of m_h

→ modify prospects for DM detection

Laura Lopez Honorez (ULB)

Revision of the IDM

February 28 2011 8 / 15

Implications for Direct Detection

Direct detection through Elastic Scattering

Prospects along the viable parameter space :

→ better compatibility with present bounds

Implications for Direct Detection

Direct detection through Elastic Scattering

Prospects along the viable parameter space :

→ better compatibility with present bounds

= 200

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cancellations above W threshold

based on:

A new viable region of the inert doublet model: JCAP 1101:002

Laura Lopez Honorez (ULB)

Revision of the IDM

February 28 2011 10 / 15

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ やくや

Above W threshold, for fixed parameters, one obtains $\Omega_{H_0} = \Omega_{dm}^{WMAP}$

Above W threshold, for fixed parameters, one obtains $\Omega_{H_0} = \Omega_{dm}^{WMAP}$

• for $m_{H^0} \gg m_W, M_h$ (Hambye '09) $\sigma v \propto g^4/m_{H^0}^2 \rightsquigarrow m_{H^0} > 534 \text{ GeV}$

Above W threshold, for fixed parameters, one obtains $\Omega_{H_0} = \Omega_{dm}^{WMAP}$

- for $m_{H^0} \gg m_W, M_h$ (Hambye '09) $\sigma v \propto g^4/m_{H^0}^2 \rightsquigarrow m_{H^0} > 534 \text{ GeV}$
- for $m_W \sim m_{H^0}$ cancellations :

$$\lambda_L \simeq rac{-2(m_{H^0}^2-(M_h/2)^2)}{v^2}$$

i.e.
$$\lambda_L < 0$$
 for $m_{H^0} > M_h/2$
• $\lambda_L > 0$ for $m_{H^0} < M_h/2$
• always need : $m_{H^0} < M_h, m_h$

Above W threshold, for fixed parameters, one obtains $\Omega_{H_0} = \Omega_{dm}^{WMAP}$

Above W threshold, for fixed parameters, one obtains $\Omega_{H_0} = \Omega_{dm}^{WMAP}$

New viable parameter space thanks to cancellations

= nac

New viable parameter space thanks to cancellations

NB : IDM can comply with EWPT measurements for large M_h as Barbieri '06 : $\Delta T_{H_0,H^+,A_0}$ can compensate negative T_h for $m_{H^+} > m_{A_0}, m_{H^0}$

Direct Detection searches

... A very efficient probe of the $m_{H^0} > m_W$ parameter space :

Remember : $\sigma_{H_0-N} \propto \left(\frac{\lambda_{H_0}}{M_{H_0}M_h^2}\right)^2$

and for cancellations, λ_L is necessarily non zero

→ a large fraction of the parameter space is already ruled out by CDMS Ahmed 10 the remaining viable param. space is within the reach of Xenon 100 Aprile 10

Conclusion

The Inert Doublet is a WIMP with a rich Scalar DM phenomenology

- We have shown that for m_{H₀} ≤ m_W, annihilation into 3 bdy final states (WW*) MUST be taken into account
- Cancellations between diagrams contributing to $H_0H_0 \rightarrow ZZ$, WW \rightsquigarrow new viable region from W-threshold up to $m_{H^0} \sim 130 \ (160) \text{ GeV}$ for $M_h < 200 \text{ GeV} \ (600 \text{ GeV})$
- The genuine DM viable parameter space next to W threshold was derived
 - below W-threshold : λ_L is reduced up to \mathcal{O} (10)
 - above *W*-threshold : $\lambda_L > 0 \, (< 0)$ for $m_{H^0} < M_h/2 \, (m_{H^0} > M_h/2)$
- Prospects for DM detection are modified
 - Direct detection :

below *W*-threshold σ_{H_0-N} decreases by a factor \mathcal{O} (100) above *W*-threshold within the reach of Xenon 100

Laura Lopez Honorez (ULB)

Revision of the IDM

February 28 2011 14 / 15

This is the End Thank you for your attention ! !

11 DQC

イロト イヨト イヨト イヨト

Backup

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Important 3-body processes : Is that so surprising?

3-body processes can take over 2-body processes

3-body \equiv real + virtual massive particle e.g. $WW^* \rightarrow W\bar{f}f'$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

Important 3-body processes : Is that so surprising?

3-body processes can take over 2-body processes

3-body \equiv real + virtual massive particle e.g. $WW^* \rightarrow W\bar{f}f'$

Well known example : higgs decay BR $(h \rightarrow WW^*) \gg$ BR $(h \rightarrow \bar{b}b)$ for $m_h \lesssim 2M_W$

Important 3-body processes : Is that so surprising?

3-body processes can take over 2-body processes

3-body \equiv real + virtual massive particle e.g. $WW^* \rightarrow W\bar{f}f'$

Well known example : higgs decay BR $(h \rightarrow WW^*) \gg$ BR $(h \rightarrow \bar{b}b)$ for $m_h \leq 2M_W$

3-body processes can enhance DM annihilation/decay :

~ Affect relic abundance, viable parameter space, detection

Significant effect on : neutralino LSP [Chen & Kamionkowski JHEP '98, Yaguna PRD'10], gravitino LSP [Choi & Yaguna '1003,& all '1007], Higgs DM [Hosotani, Ko & Tanaka PLB'09], singlet scalar DM [Yaguna PRD'10], Inert Doublet Model [LLH & Yaguna JHEP'10]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

For Indirect Detection

annihilations no more $\bar{b}b$ dominated

 \rightarrow BR($H_0H_0 \rightarrow WW^*$) ~ 1 for m_{H^0} near W threshold

work in progress...

Coannihilation-fixed parameter

三日 のへの

イロト イヨト イヨト イヨト

Above *W* threshold - fine tuning?

 a_i (i = 1, ..., n) are free parameters of a given dark matter model, the fine-tuning parameter

$$\Delta_{\Omega h^2, a_i} \equiv \frac{\partial \log \Omega h^2}{\partial \log a_i}$$

And the total fine-tuning, $\Delta_{\Omega h^2, \text{total}}$, is obtained by summing in quadrature the contributions of the different parameters of the model

 $\Delta_{\Omega h^2,\text{total}} = \sqrt{\Delta_{\Omega h^2,m_{\mu^0}}^2 + \Delta_{\Omega h^2,m_{\mu^+}}^2 + \Delta_{\Omega h^2,m_{A_0}}^2 + \Delta_{\Omega h^2,\lambda_L}^2 + \Delta_{\Omega h^2,M_h}^2}.$ The fine-tuning parameter is large if a small variation in the parameters of the models leads to a large modification of the relic density. If, for instance, $\Delta_{\Omega h^2,\text{total}} \lesssim 10$, a measurement of the parameters of the model at the 10% level will enable to compute Ωh^2 to within a factor $\mathcal{O}(2)$. As a rule of thumb, one can say that the fine-tuning is small if $\Delta_{\Omega h^2,\text{total}} \lesssim 10$.

Cancellations require increasing M_h, m_{H^+}, m_{A_0}

February 28 2011 21 / 15

Comparing 2-3 body annihilation cross section

3bdy annihilation dominates over 2 bdy on

... a significant range of the parameter space, depend on m_h

Comparing 2-3 body annihilation cross section

3bdy annihilation dominates over 2 bdy on

... a significant range of the parameter space, depend on m_h

1 =

∃ → < ∃</p>

Comparing 2-3 body annihilation cross section

3bdy annihilation dominates over 2 bdy on

•
$$\lambda_L = 10^{-2}$$

... a significant range of the parameter space, depend on m_h

• $\lambda_L = 10^{-3}$

... the entire mass range independently of m_h but not representative for $H_0 \equiv DM$

Laura Lopez Honorez (ULB)

∃ → < ∃</p>

IDM : Mass Ranges

Mass Ranges	main contributions to σ_{eff}	mass splittings	main Refs
$m_{H_0} \ll m_W(\mathcal{O}(GeV))$	$H_0H_0 \to h^* \to \bar{f}f$	$\Delta m_{ij} \gtrsim m_Z - m_{H_0} ~\sim~ 90~{\rm GeV}$	Andreas et all '08
$m_{H_0} \lesssim m_W$	$ \begin{array}{l} H_0H_0 \rightarrow h^* \rightarrow \bar{f}f \\ H_0A_0(H^+) \rightarrow Z^*(W^*) \rightarrow \bar{f}f^{(\prime)} \end{array} \end{array} $	$\Delta m_{ij} \gtrsim m_Z - m_{H_0} \gtrsim 7 {\rm GeV}$	Barbieri <i>et</i> all '06 LLH <i>et</i> all '06
$m_{H_0} \gg m_W(\mathcal{O}(TeV))$	$H_0H_0 \rightarrow ZZ, WW, hh$ coannihil into bosons	$\Delta m_{ij} \lesssim 17.6 \text{ GeV}$	Hambye <i>et</i> all '09

How to conciliate Heavy Higgs and EWPT measurements?

New physics affect EW observables

Contributions to EWPT measurement variable T from :

- Higgs : $T(M_h) = -\frac{3}{8\pi \cos^2 \theta_W} \ln \frac{M_h}{M_Z}$.
- H_2 scalars :

$$\Delta T \approx \frac{1}{24\pi^2 \alpha v^2} (M_{H^+} - M_{A_0}) (M_{H^+} - M_{H_0})$$

How to conciliate Heavy Higgs and EWPT measurements?

 \rightsquigarrow When $M_{H^+} > M_{A_0}, M_{H_0}$ positive contributions from ΔT can compensate the too large negative contributions from $T(M_h)$ due to heavy Higgs.

 \rightsquigarrow With H_2 new physics one may push M_h up to 500-600 GeV [Barbieri et al '06]

IDM : Potential - constraints

• Full Potential

$$V(H_1, H_2) = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$$

• Dark scalars couplings to Higgs and masses :

$$\begin{array}{l} \frac{1}{2} \left(\lambda_{H_0} H_0^2 + \lambda_{A_0} A_0^2 + 2\lambda_{H_c} H^+ H^- \right) \left(2v_0 h + h^2 \right) \\ m_h^2 = 2\lambda_1 v_0^2 \,, \quad m_i^2 = \mu_2^2 + \lambda_i v_0^2. \end{array}$$

Stability constraint

$$egin{array}{ccc} \lambda_{1,2} &> 0 &, \ \lambda_{H0} \,, & \lambda_{A_0} \,, & \lambda_{H_c} &> & -\sqrt{\lambda_1\lambda_2} \,. \end{array}$$

• EWPT measurements : $\Delta T \approx \frac{1}{12\pi^2 \alpha v^2} (m_{H^+} - m_{A_0}) (m_{H^+} - m_{H_0})$

$$\sigma_{\text{eff}} = \sum_{ij} \left(\sigma_g^{ij} + \sigma_\lambda^{ij} \right) \propto \frac{1}{m_{H_0}^2}$$

where $\sigma_\lambda^{ij} = \frac{\Lambda^{ij}}{m_{H_0}^2}$ with $\Lambda^{ij} \propto \lambda * \lambda$ and $\Lambda^{ij} > 0$

$$\sigma_{\text{eff}} = \sum_{ij} \left(\sigma_g^{ij} + \sigma_\lambda^{ij} \right) \propto \frac{1}{m_{H_0}^2}$$
where $\sigma_\lambda^{ij} = \frac{\Lambda^{ij}}{m_{H_0}^2}$ with $\Lambda^{ij} \propto \lambda * \lambda$ and $\Lambda^{ij} > 0$
• $m^* \sim 534 \text{ GeV}$ is minimal to satisfy WMAP
$$n^* \sim 534 \text{ GeV}$$

$$n^* \sim 534$$

$$\sigma_{\text{eff}} = \sum_{ij} \left(\sigma_g^{ij} + \sigma_\lambda^{ij} \right) \propto \frac{1}{m_{H_0}^2}$$

where $\sigma_\lambda^{ij} = \frac{\Lambda^{ij}}{m_{H_0}^2}$ with $\Lambda^{ij} \propto \lambda * \lambda$ and $\Lambda^{ij} > 0$

- *m*^{*} ~ 534 GeV is minimal to satisfy WMAP
- for fixed m_{H₀} and σ_{eff}
 λ_i lie on ellipsoid surface

Quartic couplings ON : extra Higgs processes and $m_{H_0} \neq m_{A_0} \neq m_{H_c}$

$$\sigma_{\text{eff}} = \sum_{ij} \left(\sigma_g^{ij} + \sigma_\lambda^{ij} \right) \propto \frac{1}{m_{H_0}^2}$$

where $\sigma_\lambda^{ij} = \frac{\Lambda^{ij}}{m_{H_0}^2}$ with $\Lambda^{ij} \propto \lambda * \lambda$ and $\Lambda^{ij} > 0$

 λ_i lie on ellipsoid surface

 $\rightsquigarrow \lambda_i$ are bounded, $\lambda_i^{max} \propto m_{H_0}$ at high mass.

$$\sigma_{\text{eff}} = \sum_{ij} \left(\sigma_g^{ij} + \sigma_\lambda^{ij} \right) \propto \frac{1}{m_{H_0}^2}$$

where $\sigma_\lambda^{ij} = \frac{\Lambda^{ij}}{m_{H_0}^2}$ with $\Lambda^{ij} \propto \lambda * \lambda$ and $\Lambda^{ij} > 0$

- *m*^{*} ~ 534 GeV is minimal to satisfy WMAP
- for fixed m_{H_0} and σ_{eff} λ_i lie on ellipsoid surface $\rightsquigarrow \lambda_i$ are bounded, $\lambda_i^{max} \propto m_{H_0}$ at high mass.
- mass splittings are also bounded as

$$m_i - m_j \propto (\lambda_i - \lambda_j)/m_{H_0}$$

3bdy effect on DM?

3-body processes can enhance DM annihilation :

- supersymmetric dark matter :
 - neutralino LSP : Chen & Kamionkowski JHEP '98 study $\sigma v_{\nu \to 0}$ and impact on ν detection from annihilation in the Earth bellow WW and $\bar{t}t$ mass threshold

Yaguna PRD'10 demonstrate up to 10% effect on Ωh_{χ}^2 for bino-like χ including $\bar{t}t*$ (usually 2-bdy $\bar{b}b$ dom)

- gravitino LSP : Choi & Yaguna '1003 W^*l and $Z^*\nu$ give significant (up to 90%) to \tilde{G} decay (usually 2-bdy $\gamma\nu$ dom) Choi, Restrepo, Yaguna & Zapata '1007 gamma+antimatter signal [see Yaguna talk !!]
- scalar DM
 - Higgs DM : Hosotani, Ko & Tanaka PLB'09 (gauge-Higgs unification) $\Omega_{DM} \rightsquigarrow m_{DM} = 75 \text{ GeV} (2bdy \text{ only}) \Rightarrow m_{DM} = 70 \text{ GeV} (including 3bdy)$
 - singlet scalar DM : Yaguna PRD'10, $SS \to h \to WW^*$ enhance $\sigma v_{\nu \to 0}$ and reduce Ω_{DM} independently of S-higgs coupling

Laura Lopez Honorez (ULB)

Revision of the IDM

February 28 2011 28 / 15