La Thuile 2011, March 2 2010

Physics at Y(5S)

Roman Mizuk ITEP, Moscow

for the BELLE Collaboration

Contents

Observation of $B_s \rightarrow J/\psi f_0(980)$ and evidence for $B_s \rightarrow J/\psi f_0(1370)$

arXiv:1102.2759, submitted to PRL

Observation of h_b(1P) and h_b(2P)

Results are preliminary

Integrated Luminosity at B-factories

e⁺e⁻ hadronic cross-section

Measurements of B_s decays at Belle

B _s ⁰ Decay	Branching Fraction, 10 ⁻³	B ⁰ decay	Branching fraction, 10 ⁻³
D ⁰ . D - +			
$B_{s}^{0} \rightarrow D_{s}^{-} \pi^{-}$	3.67 10.49 (t_s)	$B^{0} \rightarrow D^{-}\pi'$	2.68 ± 0.13
> $B_s^0 \rightarrow D_s^{*-} \pi^+$	2.4 📲 ± 0.3 ± 0.4 (f _s)	$B^0 \rightarrow D^* \bar{\pi}^+$	2.76 ± 0.13
> $B_s^0 \rightarrow D_s^- \rho^+$	8.5 🏥 ± 1.1 ± 1.3 (f _s)	$B^0 \rightarrow D^- \rho^+$	7.6 ± 1.3
> $B_s^0 \rightarrow D_s^{*-} \rho^+$	11.9 $\frac{+2.2}{-2.0} \pm$ 1.7 \pm 1.8 (f _s)	$B^0 \rightarrow D^* \bar{\rho}^+$	6.8 ± 0.9
$B_{s}^{0} \rightarrow D_{s}^{-/+} K^{+/-}$	0.24 111 ± 0.03 ± 0.03 (f _s)	$B^0 \rightarrow D^{-/+} K^{+/-}$	0.20 ± 0.06
> $B_s^0 \rightarrow \phi \gamma$	(5.7 👬 🏰) x 10 -2	$B^0 \rightarrow K^*(892)^0 \gamma$	(4.01 \pm 0.20) x 10 $^{\text{-2}}$
$B_s^0 \rightarrow K^+ K^-$	(3.8 –0.9 ± 0.5 ± 0.5 (f _s)) x 10 ⁻²	$B^0 \rightarrow K^+ \pi^-$	(1.94 \pm 0.06) x 10 $^{\text{-2}}$
$B_s^0 \rightarrow D_s^+ D_s^-$	(1.03 -038 -028) x 10	$B^0 \rightarrow D_s^+ D^-$	(0.72 ± 0.08) x 10
> $B_s^0 \rightarrow D_s^{*+} D_s^{}$	(2.75 🏥 ± 0.69) x 10	$B^0 \rightarrow D_s^{*+} D^-$	(0.80 ± 0.11) x 10
> $B_s^0 \rightarrow D_s^{*+} D_s^{*-}$	(3.08 1122 1088) x 10	$B^0 \rightarrow D_s^{*+} D^{*-}$	(1.77 \pm 0.14) x 10
$> B_s^0 \rightarrow J/\psi \eta$	$(3.32 \pm 0.87 $	${\sf B}^0 ightarrow {\sf J}/\psi \; {\sf K}^0$	(8.71 \pm 0.32) / 10 $$ [/3]
> $B_s^0 \rightarrow J/\psi \eta'$	(3.1 ± 1.2 🏰 ± 0.38(f _s)) / 10	${\sf B}^0 ightarrow {\sf J}/\psi \; {\sf K}^0$	(8.71 \pm 0.32) / 10 $$ [/3]
> $B_s^0 \rightarrow X^- \ell^+ v$	$(10.2 \pm 0.8 \pm 0.9) ext{ x 10}$	$B^0 \rightarrow X^- \ell^+ v$	(10.33 \pm 0.28) x 10

Before Belle less then 10 decays were known

Properties of B_s^0 and B^0 seem to be consistent with SU(3)

Today: first results with 121.4 fb⁻¹

L= 23.6 fb⁻¹

Observation of $B_s \rightarrow J/\psi f_0(980)$ and evidence for $B_s \rightarrow J/\psi f_0(1370)$

Motivation

$B_s \rightarrow J/\psi f_0$

CP eigenstate , f_0 is scalar \Rightarrow no angular analysis is required to measure $\Delta\Gamma/\Gamma$ and CPV phase β_s sensitivity to β_s can be comparable to "golden" J/ψ ϕ

Stone et al. PRD79,074024(2009)

 $\exists f_0 \rightarrow K^+K^- \\ \Rightarrow S\text{-wave polution in } J/\psi\phi \text{ mode}$

$B_s {\rightarrow} J/\psi \; f_0(980) \; / \; f_0(1370) \; Signals$

$B_s \rightarrow J/\psi f_0(980) / f_0(1370)$ Signals

 J/ψ helicity angle is consistent with expectations for scalar resonance

 \Rightarrow Observation of $B_s \rightarrow J/\psi f_0(980)$ and evidence for $B_s \rightarrow J/\psi f_0(1370)$

Observation of $B_s \rightarrow J/\psi f_0(980)$ is also reported by LHCb and CDF arXiv:1102.0206

Observation of h_b(1P) & h_b(2P)

Puzzles of $\Upsilon(5S)$ decays

PRD81,112003(2010)

2. BF[$\Upsilon(5S) \rightarrow B^*\overline{B}\pi$] = $(7.3 + 2.3 \pm 0.8)^{\circ}$ >10 times higher than expectations

 $\Upsilon(5S)$ is very interesting and not yet understood region

Trigger

Observation of $e^+e^- \rightarrow \pi^+\pi^- h_c$ by CLEO

\Rightarrow Search for h_b in Υ (5S) data

Introduction to h_b(**nP**)

 $\begin{array}{l} \underline{\text{Expected mass}} \\ \approx (M\chi_{b0} + 3 M\chi_{b1} + 5 M\chi_{b2}) \, / \, 9 \\ \\ \Delta M_{CoG} \Rightarrow \text{test of hyperfine interaction} \end{array}$

For $h_c \Delta M_{CoG} = -0.12 \pm 0.30$, expect smaller deviation for $h_b(nP)$.

arXiv:1102.4565 Evidence from BaBar

$$\gamma(2C) = -0 h (1D) = -0 m m$$

Method : missing mass technique

Method : missing mass technique

\Rightarrow Search for h_b(nP) peaks in MM($\pi^+\pi^-$) spectrum

Simple selection :

 $\pi^+\pi^-$: good quality, positively identified

Continuum events have jet-like shape \Rightarrow cut on sphericity variable R2<0.3 R2 = ratio of Fox-Wolfram moments

"blind analysis"

Calibration channels

$$\begin{split} \Upsilon(5S) \to \Upsilon(\mathbf{nS}) & \pi + \pi - \\ \Upsilon(\mathbf{nS}) \to \mu + \mu - \end{split} (n = 1, 2, 3)$$

Calibration channels

$$\begin{split} \Upsilon(5S) &\to \Upsilon(\mathbf{nS}) \ \pi^+\pi^- \\ \Upsilon(\mathbf{nS}) \to \mu^+\mu^- \end{split} (n = 1, 2, 3)$$

Calibration channels

$$\begin{split} \Upsilon(5S) &\to \Upsilon(\mathbf{nS}) \ \pi^+\pi^- \\ \Upsilon(\mathbf{nS}) \to \mu^+\mu^- \end{split} (n = 1,2,3) \end{split}$$

MM($\pi^+\pi^-$ **)** spectrum

121.4 fb⁻¹

Description of fit to MM($\pi^+\pi^-$ **)**

BG: Chebyshev polynomial, order: max C.L. of fit 6th or 7th order Signal: shape is fixed from $\mu^+\mu^-\pi^+\pi^-$ data

"Residuals" – subtract polynomial from data points

K_S contribution: subtract bin-by-bin

in region #3 only

Results

121.4 fb⁻¹

22

Systematics

	Polynomial	Fit	Signal	Selection
	order	range	shape	requirements
$N[h_b], 10^3$	± 2.4	± 3.6	$^{+1.2}_{-8.0}$	_
$M[h_b], {\rm MeV}/c^2$	$\pm.04$	$\pm.10$	$^{+0.04}_{-0.20}$	+.2030
$N[h_b(2P)], 10^3$	± 2.2	± 2.6	+239.0	
$M[h_b(2P)], \mathrm{MeV}/c^2$	$\pm.10$	$\pm .20$	$^{+1.0}_{-0.0}$	$\pm.08$

Results are stable

Significance w/ systematics

h _b (1P)	5.5σ		
h _b (2P)	11.2σ		

$M_{\text{measured}} - M_{\text{PDG}}$ for reference channels

Deviations of reference channels from PDG \Rightarrow additional uncertainty $\pm 1 MeV$

local variations of background shape?

Mass measurements

 Results
 $h_b(1P)$ 9898.25 ± 1.06^{+1.03}_{-1.07} MeV/c²

 $h_b(2P)$ 10259.76 ± 0.64^{+1.43}_{-1.03} MeV/c²

 Deviations from CoG of χ_{bJ} masses

 $h_b(1P)$ 1.62 ± 1.52 MeV/c²

 $h_b(2P)$ 0.48 ^{+1.57}_{-1.27} MeV/c²

Why do we think these are $h_b(nP)$ and not $\chi_{b1}(nP)$?

- The strong decay $\Upsilon(5S) \rightarrow \chi_{b1} \pi^+ \pi^-$ violates isospin conservation
- Masses are significantly different:

 $\Delta M(1P) = -5.47 \pm 1.56 \quad (3.5\sigma)$ $\Delta M(2P) = -4.30 \pm 1.35 \quad (3.2\sigma)$

\Rightarrow Observed states are $h_b(nP)$

Ratio of production rates

Calibrate MC using data

Efficiency of R2<0.3 from data Matrix element vs. $(m_{\pi\pi}, \cos\theta_{Hel}) \Rightarrow$ for $\Upsilon(nS) - \text{from } \mu^+\mu^-\pi^+\pi^- \text{ data}$, for $h_b(1P) [h_b(2P)] - \text{same as for } \Upsilon(2S) [\Upsilon(3S)]$ + variations for systematics

$$\frac{\Gamma[\Upsilon(5S) \rightarrow h_b(nP) \pi^+ \pi^-]}{\Gamma[\Upsilon(5S) \rightarrow \Upsilon(2S) \pi^+ \pi^-]} = \begin{cases} 0.407 \pm 0.079^{+0.043}_{-0.076} & \text{for } h_b(1P) \\ 0.78 \pm 0.09^{+0.22}_{-0.10} & \text{for } h_b(2P) \end{cases}$$
Spin h_b = 0 \Rightarrow spin-flip nd spin-flip

Process with spin-flip of heavy quark is not suppressed

⇒ Mechanism of Υ (5S) → h_b(nP) $\pi^+\pi^-$ decay is exotic

 $\frac{\sigma[e^+e^- \to h_b(1P) \ \pi^+\pi^-] \ @ \ \Upsilon(4S)}{\sigma[e^+e^- \to h_b(1P) \ \pi^+\pi^-] \ @ \ \Upsilon(5S)} < 0.28 \text{ at } 90\% \text{C.L.}$

 $\Rightarrow \Upsilon$ (4S) does not show anomalous properties

Conclusions

Primary purpose of taking data at $\Upsilon(5S)$ – studies of B_s decays

Observation of $B_s \rightarrow J/\psi f_0(980)$, evidence for $J/\psi f_0(1370)$ CP eigenstate , f_0 is scalar \Rightarrow no angular analysis is required to measure $\Delta\Gamma/\Gamma$ and CPV phase β_s

Nature is favorable : $\Upsilon(5S)$ is a rich source of unexpected QCD phenomena

Observation of h_b(1P) and h_b(2P)

Masses consistent with CoG of χ_{bJ} states, as expected Anomalous production rate