Recent results from **BABAR**

V. Tisserand, LAPP-Annecy (CNRS-IN2P3 et Université de Savoie).

- **Bottomonium spectroscopy:** → Y(3S) sample **I**)
 - Radiative transitions using converted γ & search for $\eta_{b}(1S,2S)$ (+ $\Upsilon(2S)$ sample)
 - Search for $h_b(1P)$ in $\Upsilon(3S) \rightarrow (\pi^0/\pi^+\pi^-)h_b(1P)$ [$h_b(1P) \rightarrow \gamma \eta_b(1S)$]
- II) Search for the decay $D^0 \rightarrow \gamma \gamma$
 - & measurement of D^0 → $\pi^0\pi^0$ → Υ (4S) sample and below "off-peak"
- III) $\mathscr{B}(B_{s} \rightarrow X \mid v_{l}) \otimes B_{s}$ fraction: $f_{s} \rightarrow scan above the \Upsilon(4S)$

All results are preliminary

DE LA VALLEE D'AOSTE La Thuile - March 2, 2011

BABAR dataset

- PEP-II rings: asymmetric e⁺e⁻ collider@ SLAC
- BaBar Collected 530/fb data 1999-2008
- data analysis still very active with rich physics program: >455 publi./submitted

Ύ(4S)	Ƴ(3S)	Ƴ(2S)	Other*	
430/fb	30.2/fb	14.5/fb	54/fb	

^{*} Mostly @Y(4S)-40MeV

Bottomonium spectroscopy

- Spectrum below open-flavor threshold richer than charmonium
- → Masses & BFs important to test heavy $q\bar{q}$ potential models and lattice QCD and pNRQCD
- Hadronic transitions probe non-perturbative QCD
- Bottomonium states with L=0, 1 & S=1
 → known since 1977⇒ 1990's
- no spin-singlet observed?
 Υ(1D_{J=2}) observed by CLEO
 (2004) γγΥ(1S) & BaBar (2010)
 ππΥ(1S)
- η_b by BaBar (2008)
- h_b(1P) state not yet observed

Bottomonium spectroscopy

- Spectrum below open-flavor threshold richer than charmonium
- → Masses & BFs important to test heavy $q\bar{q}$ potential models and lattice QCD and pNRQCD
- Hadronic transitions probe non-perturbative QCD

Bottomonium spectroscopy

- Bottomonium states with L=0, 1 & S=1
 → known since 1977⇒ 1990's
- spin-singlet observed?

η_b by BaBar (2008 Υ(3S),
 2009 Υ(2S)) + CLEO (2010
 Υ(3S)) from radiative decays

 h_b(1P) state not yet observed η_b and h_b : hyperfine mass splitting \rightarrow spin dependence of the $q\bar{q}$ potential

Inclusive photon spectrum for Υ (2S,3S) decays with converted photons $\gamma \rightarrow e^+e^-$

→ Monochromatic γ (in init. part. CM): E_{γ}^{*} (initial → final) = $(m_{init.}^{2} - m_{fin.}^{2})/2m_{init.}$

- → Use Converted photons ($\gamma \rightarrow e^+e^-$): improves resolution (25 \Rightarrow 5 MeV) and helps to resolve overlapping γ rays, but lower reconstruction efficiency (\approx 1/20)
 - Fit pair of tracks, selected with χ^2_{fitter} , m_{γ} , ρ_{γ}
 - Additional cuts: $|\cos\theta_{thrust}|$, N_{tracks} , π^{o} veto, R_{2} (sphericity)

V. Tisserand, La Thuile 2011

Inclusive photon spectrum for Υ (2S,3S) decays with converted photons $\gamma \rightarrow e^+e^-$

→ Define 4 E_{γ}^* regions of interest:

 $\rightarrow \chi^2$ fits to recoil E^{*}_y spectrum in Υ (3S) and Υ (2S) datasets (rich phenomenology):

- Υ (3,2S) $\rightarrow \gamma \eta_b$ (1S) & Υ (3S) $\rightarrow \gamma \eta_b$ (2S): alternate η_b (1S,2S) search + mass measurement
- $e^+ e^-_{E=m_{\Upsilon(nS)}} \rightarrow \gamma_{ISR} \Upsilon(1S)$
- $\chi_{bJ}(1,2P) \rightarrow \gamma \Upsilon(1S), \chi_{bJ}(2P) \rightarrow \gamma \Upsilon(2S), \Upsilon(3S) \rightarrow \gamma \chi_{bJ}(1P)$
- Combinatorial background

- Fixed predict contrib. from $\Upsilon({}^{3}1D_{I}) \rightarrow \gamma \chi_{bI}(1P)$
- $\chi_{b1,2}(2P) \rightarrow \gamma \Upsilon(2S)$ seen
- $\chi_{b0}(2P) \rightarrow \gamma \Upsilon(2S)$ not seen
- Consistent with CLEO and CUSB (92)
- Most precise measurement

Transition	E_{γ}^*	Yield	ϵ	Derived Branching	Fraction (?	%)
	(MeV)		(%)	BABAR	CUSB	CLEO
$\chi_{b0}(2P) \to \gamma \Upsilon(2S)$	205.0	-347 ± 209	0.105	$-4.9 \pm 2.9^{+0.7}_{-0.8} \pm 0.5 \; (< 2.9)$	3.6 ± 1.6	< 5.2
$\chi_{b1}(2P) \to \gamma \Upsilon(2S)$	229.7	4294 ± 251	0.152	$19.5 \pm 1.1^{+1.1}_{-1.0} \pm 1.9$	13.6 ± 2.4	21.1 ± 4.5
$\chi_{b2}(2P) \to \gamma \Upsilon(2S)$	242.3	2462 ± 243	0.190	$8.6^{+0.9}_{-0.8} \pm 0.5 \pm 1.1$	10.9 ± 2.2	9.9 ± 2.7

V. Tisserand, La Thuile 2011

U.L.@90% of CL & $\mathscr{B}(\Upsilon(3S) \rightarrow \gamma \chi_{bl}(2P))$ from PDG

"Medium" $E^*\gamma$ for $\Upsilon(3S)$ data

 $300 < E_{\gamma}^* < 600 \text{ MeV}$

(6 + 1?) pathways:

- $\Upsilon(3S) \to \gamma \chi_{bJ}(1P)$
- $\Upsilon(3S) \to \gamma \gamma \Upsilon(2S) \to \gamma \gamma \gamma \chi_{bJ}(1P)$
- $\Upsilon(3S) \to \gamma \gamma \Upsilon(1D_J) \to \gamma \gamma \gamma \chi_{bJ}(1P)$
- $\Upsilon(3S) \to \pi \pi \Upsilon(2S) \to \pi \pi \gamma \chi_{bJ}(1P)$
- $\Upsilon(3S) \to \gamma \chi_{bJ}(2P) \to \gamma \pi \pi \chi_{bJ}(1P)$
- $e^+e^- \to \gamma_{ISR} \Upsilon(2S) \to \gamma_{ISR} \gamma \chi_{bJ}(1P)$
- $\Upsilon(\textbf{3S}) \rightarrow \gamma \; \eta_b(\textbf{2S}) \;\; \text{expect E*} \gamma \text{=} \text{335} \; \text{=} \text{375MeV}$

"Medium" $E^*\gamma$ for Υ (3S) data

(6 + 1?) pathways:

- $\Upsilon(3S) \to \gamma \chi_{bJ}(1P)$
- $\Upsilon(3S) \to \gamma \gamma \Upsilon(2S) \to \gamma \gamma \gamma \chi_{bJ}(1P)$
- $\Upsilon(3S) \to \gamma \gamma \Upsilon(1D_J) \to \gamma \gamma \gamma \chi_{bJ}(1P)$
- $\Upsilon(3S) \to \pi \pi \Upsilon(2S) \to \pi \pi \gamma \chi_{bJ}(1P)$
- $\Upsilon(3S) \to \gamma \chi_{bJ}(2P) \to \gamma \pi \pi \chi_{bJ}(1P)$
- $e^+e^- \to \gamma_{ISR} \Upsilon(2S) \to \gamma_{ISR} \gamma \chi_{bJ}(1P)$
- $\bullet \Upsilon (\textbf{3S}) \rightarrow \gamma \; \eta_b (\textbf{2S}) \;\; \text{expect E*} \gamma \text{=} \textbf{335} \; \text{=} \textbf{375} \text{MeV}$
- Υ (3S) $\rightarrow \gamma \chi_{b0,2}$ (1P) observed
- Υ (3S) $\rightarrow \gamma \chi_{b1}$ (1P) not seen
- Consistent with CLEO 2010 arXiv:1012.0589
- $\mathscr{B}(\Upsilon(3S) \rightarrow \gamma \eta_b(2S)) < 1.9 \times 10^{-3} \text{ 90\% CL}$ (scan (335<E* γ <375Mev) CLEO 2005 : 0.62 ×10⁻³

Transition	E^*_{γ}	Yield	ϵ	Derived Branching F	raction $(\times 10^{-3})$
	(MeV)		(%)	BABAR	CLEO
$\Upsilon(3S) \to \gamma \chi_{b2}(1P)$	433.1	9699 ± 318	0.794	$10.6 \pm 0.3 \pm 0.6$	7.7 ± 1.3
$\Upsilon(3S) \to \gamma \chi_{b1}(1P)$	452.2	483 ± 315	0.818	$0.5 \pm 0.3^{+0.2}_{-0.1} \ (< 1.1)$	1.6 ± 0.5
$\Upsilon(3S) \to \gamma \chi_{b0}(1P)$	483.5	2273 ± 307	0.730	$2.7\pm0.4\pm0.2$	3.0 ± 1.1

"High" $E^*\gamma$ for Υ (3S) data

600 <E*_γ< 1100 MeV

<u>5 monochromatic γ:</u>

1-3) $\chi_{bJ}(\text{2P}) \rightarrow \gamma \Upsilon(\text{1S})$; J=0,1,2

- 4) $e^+e^- \rightarrow \gamma_{ISR} \Upsilon(1S)$: not from $\Upsilon(3S)$!
- **5) Signal** η_b(**1S**)

- Significance: 2.9 σ stat., 2.7 σ +syst

Transition	E^*_{γ}	Yield	ϵ	Derived Branching	Fraction ((%)
	(MeV $)$		(%)	BABAR	CUSB	CLEO
$\chi_{b0}(2P) \to \gamma \Upsilon(1S)$	742.7	469^{+260}_{-259}	1.025	$0.7 \pm 0.4^{+0.2}_{-0.1} \pm 0.1 \ (< 1.2)$	< 1.9	< 2.2
$\chi_{b1}(2P) \to \gamma \Upsilon(1S)$	764.1	14965^{+381}_{-383}	1.039	$9.9 \pm 0.3 \pm 0.4 \pm 0.9$	7.5 ± 1.3	10.4 ± 2.4
$\chi_{b2}(2P) \to \gamma \Upsilon(1S)$	776.4	11283^{+384}_{-385}	1.056	$7.1 \pm 0.2 \pm 0.3 \pm 0.9$	6.1 ± 1.2	7.7 ± 2.0
$\Upsilon(3S) o \gamma \eta_b(1S)$	$907.9 \pm 2.8 \pm 0.9$	933^{+263}_{-262}	1.388	$0.059 \pm 0.016^{+0.014}_{-0.016}$	-	-

V. Tisserand, La Thuile 2011

U.L.@90% of CL & & $\mathscr{B}(\Upsilon(3S) \rightarrow \gamma \chi_{bl}(2P))$ from PDG

"High" $E^*\gamma$ for $\Upsilon(2S)$ data

300 <E*_v< 800 MeV

<u>5 monochromatic γ:</u>

1-3) $\chi_{bJ}(1P) \rightarrow \gamma \Upsilon(1S)$; J=0,1,2

- 4) $e^+e^- \rightarrow \gamma_{ISR} \Upsilon(1S)$: not from $\Upsilon(2S)$!
- **5) Signal** η_b(**1S**)

300 <E*_{\sigma}< 800 MeV

Transition	E^*_{γ}	Yield	ϵ	Derived Branchi	ng Frac	tion (%))
	(MeV $)$		(%)	BABAR	CB	CUSB	CLEO
$\chi_{b0}(1P) \to \gamma \Upsilon(1S)$	391.5	391 ± 267	0.496	$2.3 \pm 1.5^{+1.0}_{-0.7} \pm 0.2 \ (< 4.6)$	< 5	< 12	1.7 ± 0.4
$\chi_{b1}(1P) \to \gamma \Upsilon(1S)$	423.0	12604 ± 285	0.548	$36.2 \pm 0.8 \pm 1.7 \pm 2.1$	34 ± 7	40 ± 10	33.0 ± 2.6
$\chi_{b2}(1P) \to \gamma \Upsilon(1S)$	442.0	7665^{+270}_{-272}	0.576	$20.2 \pm 0.7^{+1.0}_{-1.4} \pm 1.0$	25 ± 6	19 ± 8	18.5 ± 1.4
$\Upsilon(2S) \to \gamma \eta_b(1S)$	$613.7^{+3.0+0.7}_{-2.6-1.1}$	1109 ± 348	1.050	$0.11 \pm 0.04 \substack{+0.07 \\ -0.05}$	-	-	-

V. Tisserand, La Thuile 2011

U.L.@90% of CL & & $\mathscr{B}(\Upsilon(2S) \rightarrow \gamma \chi_{bl}(1P))$ from PDG

Summary on inclusive photon spectrum for Υ (2,3S) decays with converted γ

- Best $\mathscr{B}(\chi_{bJ}(nP) \rightarrow \gamma \Upsilon(mS))$
 - First direct measurements
 - Good agreement with theory

(Kwong & Rosner, PRD 38 279 (1988))

- Observation: $\Upsilon(3S) \rightarrow \gamma \chi_{b0,2}(1P)$ not $\gamma \chi_{b1}(1P)$
 - Inconsistent with any theory

(~ok with CLEO 2010 arXiv:1012.0589)

- New information on $m_{\eta_b(1S)}$?
 - significance ~2.7 σ for Υ (3S) only
 - BTW disagrees with prev. expt.

Decay	BABAR $(\%)$	Theory $(\%)$
$\mathcal{B}(\chi_{b0}(2P) \to \gamma \Upsilon(2S))$	(< 2.9)	1.27
$\mathcal{B}(\chi_{b1}(2P) \to \gamma \Upsilon(2S)))$	19.1 ± 2.3	20.2
$\mathcal{B}(\chi_{b2}(2P) \to \gamma \Upsilon(2S))$	8.2 ± 1.4	10.1
$\mathcal{B}(\chi_{b0}(2P) \to \gamma \Upsilon(1S))$	(< 1.2)	0.96
$\mathcal{B}(\chi_{b1}(2P) \to \gamma \Upsilon(1S))$	9.9 ± 1.1	11.8
$\mathcal{B}(\chi_{b2}(2P) \to \gamma \Upsilon(1S))$	$7.1^{+1.0}_{-0.9}$	5.3
$\mathcal{B}(\chi_{b0}(1P) \to \gamma \Upsilon(1S))$	(< 4.6)	3.2
$\mathcal{B}(\chi_{b1}(1P) \to \gamma \Upsilon(1S))$	36.2 ± 2.8	46.1
$\mathcal{B}(\chi_{b2}(1P) \to \gamma \Upsilon(1S))$	$20.2^{+1.6}_{-1.8}$	22.2

Source	J = 0	J = 1	J=2
BABAR	55 ± 10	< 22	216 ± 25
Moxhay-Rosner	25	25	150
Grotch <i>et al.</i>	114	3.4	194
Daghighian-Silverman	16	100	650
Fulcher	10	20	30
Lähde	150	110	40
Ebert <i>et al.</i>	27	67	97

Search for $h_b(1P)$ in $\Upsilon(3S)$

axial vector partner of 3 P-wave χ_{bJ}(1P) states
 → expected m_{hb}(1P) as spin-averaged Σ[(2J+1) m_j]/Σ(2J+1):

 $(m\chi_{b0^{(1P)}} + 3 m\chi_{b1^{(1P)}} + 5 m\chi_{b2^{(1P)}}) / 9 \approx (9900 \pm \mathcal{O}(3)) MeV/c^2$

• **Production mechanisms:** (Kuang,Tuan,Yan (81-92), Voloshin (86), Godfrey(05)) Υ (3S) $\rightarrow \gamma h_b$ (1P) forbidden (C-Parity)

$$\begin{split} &\mathcal{B}(\Upsilon(3S) \to \pi^{+}\pi^{-}h_{b}(1P)) \simeq 10^{-5} - 10^{-3} \\ &\mathcal{B}(\Upsilon(3S) \to \pi^{0}h_{b}(1P)) \simeq 10^{-3} \\ & \mathsf{R}(\pi^{0}h_{b}(1P) \ / \ \pi^{+}\pi^{-}h_{b}(1P)) \simeq 0.05 - 20 \end{split}$$

• <u>Decays (width<1Mev)</u>: (Godfrey, Rosner (02-05)) $h_b(1P) \rightarrow ggg$ (~57%), $\gamma \eta_b(1S)$ (40-50%), γgg (~2%)

 $\Rightarrow \textbf{Charmonium } h_c(\textbf{1P}) \textbf{ observed in analogous decay chain: } \psi(\textbf{2S}) \rightarrow \pi^0 h_c \textbf{ ; } h_c \rightarrow \gamma \eta_c \text{ [CLEO 2005; BES 2010] and also } e^+e^- \rightarrow \pi^+\pi^-h_c \text{ at 4170 MeV (CLEO-C arXiv:1102.3424)}$

• Previous searches by CLEO (91-94) (90% CL): $\mathscr{B}(\Upsilon(3S) \to \pi^{+}\pi^{-}h_{b}(1P)) < 1.8 \times 10^{-3}$ $\mathscr{B}(\Upsilon(3S) \to \pi^{0}h_{b}(1P)) < 2.7 \times 10^{-3}$

Search for $\Upsilon(3S) \rightarrow \pi^0 h_b(1P) \rightarrow \pi^0 \gamma \eta_b$: analysis strategy

• **Reconstruct** $\pi^{0}(\gamma_{1}\gamma_{2})$ and γ :

NEW: arXiv:1102.4565 submitted to Phys. Rev. D RC

- E*(γ) consistent with h_b $\rightarrow \gamma \eta_b$ transition: [420, 540] MeV
- Cuts on N_{tracks}, R₂ (event shape), π^0 veto (all γ candidates), π^0 cos θ_{heli}
- \Rightarrow efficiency=(15.8±0.2)%
- Search for a peak near 9.9 GeV/c² in the π^0 recoil mass spectrum (in the Υ (3S) frame):

$$m_{\text{recoil}}(\pi^{0}) \equiv \sqrt{(E_{Y(3S)}^{*} - E_{\pi^{0}}^{*})^{2} - (\vec{p}_{\pi^{0}}^{*})^{2}} \qquad (\pm 25)$$

(±25MeV/c²)

- Constrain $m\pi^0$ to improve resolution. - $N\pi^0$ from $m_{\gamma_1\gamma_2}$ fit in each of the 90 $m_{recoil}(\pi^0)$ bin of the spectrum (3 MeV/c²). average $\chi^2/ndof=0.98\pm0.03$
- χ^2 fit of $m_{recoil}(\pi^0)$ distribution
 - h_b(1P) signal: sum 2 Crystal Ball PDF
 - Background: 5th order polynomial,

from reweighted MC (excluding signal region)

Search for $\Upsilon(3S) \rightarrow \pi^+\pi^-h_b(1P)$: analysis strategy

- Combine pairs of oppositely charged tracks:
- Remove K_{s}^{0} (+ Λ and γ convert.): vertex in beam spot + π -PID
- Cuts on N_{tracks}, R₂ (event shape), E_{total}
- \Rightarrow efficiency=41.8%
- Search for a peak near 9.9 GeV/c² in the $\pi^+\pi^-$ recoil mass spectrum (in the Υ (3S) frame):

$$m_{\text{recoil}}(\pi\pi) \equiv \sqrt{(M_{Y(3S)} - E_{\pi\pi}^{*})^{2} - (\vec{p}_{\pi\pi}^{*})^{2}} \quad (r_{\pi\pi})^{2}$$

resolution: 9MeV/c²)

- 1D χ^2 fit of m_{recoil}($\pi^+\pi^-$) distribution with 7 components:
 - h_b signal: Symmetric two-sided Crystal Ball (TCB) PDF
 - $\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(2S)$: Asymmetric TCB + Bifurcated Gaussian \rightarrow used for mass calibration $\Upsilon(2S)$:

 δ_{M} =(+0.42±0.01(stat)±0.59(syst)) MeV/c²

- $\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)$: same, with fixed feed-down components
- $\chi_{b1,2}(2P) \rightarrow \pi^+\pi^-\chi_{b1,2}(1P)$: TCB, with fixed peak position
- $K^0_{\ s} \rightarrow \pi^+\pi^-$: MC-determined phase space
- Non-peaking background (including ISR $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(1S)$): 6th order Chebychev polynomial
- \rightarrow 2 steps W/O (bkgd components) and scan for h_b

Search for $\Upsilon(3S) \rightarrow \pi^+\pi^-h_b(1P): m_{recoil}(\pi^+\pi^-)$

Search for $D^0 \rightarrow \gamma \gamma$: Theory & Motivation

- → FCNC Decay:
- Forbidden at the tree-level
- 1-loop GIM suppressed in charm
- → SM Dominated by long distance effects PRD 66,014009 (2002)
- Short-range (mainly 2-loops): $\mathscr{B}(D^0 \rightarrow \gamma \gamma) \approx 3 \times 10^{-11}$
- Long-range by Vector Meson Dominance (VMD): $\mathscr{B}(D^0 \rightarrow \gamma \gamma) \approx (3.5^{+4.0}_{-2.6}) \times 10^{-8}$

 $HQ\chi PT \Rightarrow (1.0\pm0.5) \times 10^{-8}$ PRD 64 074008 (2001)

$$D^{0} \longrightarrow \bullet^{\gamma}$$

→ Possible ×200 enhancement from long distance new physics (NP): $\mathcal{B}(D^0 \rightarrow \gamma \gamma) \approx 6 \times 10^{-6}$ (gluino-exchange@MSSM) *PLB 500, 304 (2001)*

→Within the range of **BABAR** sensitivity: 470.5/fb near Υ (4S) \Rightarrow >610×10⁶ C \overline{C} pairs

 \Rightarrow Excellent (but difficult) mode for NP search.

Search for $D^0 \rightarrow \gamma \gamma$ and measurement of $D^0 \rightarrow \pi^0 \pi^0$

\mathcal{B}	Experimental results	
Mode	Value	
$D^0 o \gamma \gamma$	$< 2.7 \times 10^{-5}$	PDG'10 mainly CLEO
$D^0 \to \pi^0 \pi^0$	$(8.0 \pm 0.8) \times 10^{-4}$	PDG'10 mainly CLEO
$D^0 \rightarrow K^0_e \pi^0$	$(1.22 \pm 0.05) \times 10^{-2}$	CLEO'08

• Largest bkgd is from $\pi^0\pi^0 \Rightarrow$ Measure $\mathscr{B}(D^0 \rightarrow \pi^0\pi^0)$ wrt $\mathscr{B}(D^0 \rightarrow K^0_{s}\pi^0)$

 \Rightarrow abundant, precise and pure reference channel ($\Delta \mathscr{B} \sim 4\%$) + some systematic cancel in ratio

 \Rightarrow main bkgd for $\pi^0\pi^0$: $D^0 \rightarrow K^0/\overline{K}^0\pi^0$ & $K\pi\pi^0$

 \Rightarrow Use $\pi^0\pi^0$ result in $\gamma\gamma$ background

• Use $D^{*+} \rightarrow D^0 \pi^+$ tagged events : $P_{D^*} > 2.4 - 2.85$ GeV/c to remove BB bkgd (remove QED: $N_{(tracks, neutrals)} > 4$ note that $D^{*0} \rightarrow D^0 \pi^0 / \gamma$ is the main bkgd for $K^0_s \pi^0$)

• veto against π⁰ (66%(5%) efficient for signal(bkgd))

analysis	$D^0 \rightarrow \pi^0 \pi^0$	D ⁰→γγ
E for signal	15.2%	6.1%
ϵ for norm. $K^0_{\ s}\pi^0$	12.0%	7.6%

Measure
$$\mathscr{B}(D^0 \rightarrow \gamma \gamma)$$

wrt $\mathscr{B}(D^0 \rightarrow K^0_s \pi^0)$

Search for $D^0 \rightarrow \gamma \gamma$ and measurement of $D^0 \rightarrow \pi^0 \pi^0$

$\mathcal{B}(B_s \rightarrow X \mid v_1) \otimes B_s$ fraction: f_s above $\Upsilon(4S)$

- semi-leptonic $B_{u,d}$: $\mathscr{B}(B_{u,d} \rightarrow X | v_l) = (10.99 10.33 \pm 0.28)\%$ well-known
- Semi-leptonic $B_s: \mathscr{B}(B_s \rightarrow X \mid v_l)$ not well-known
 - (7.9 \pm 2.4)% (PDG from LEP@Z⁰ includes P(b \rightarrow B_s)=(10.5 \pm 0.9)%)
 - (10.2±0.8±0.9)% (Belle unpublished arXiv:0710.2548)
 - LHCb measures ratios of semi-exclusive decays to total inclusive (arXiv:1102.0348): $\mathcal{B}(B_s \rightarrow (D_{s2}^*/D_{s1})^+ X\mu\nu_{\mu}) / \mathcal{B}(B_s \rightarrow X\mu\nu_{\mu})$

 \Rightarrow Use the 4.1/fb scan above Υ (4S) ((25.500±6200) $B_s^{(*)}\overline{B}_s^{(*)}$) to measure both the inclusive semi-leptonic \mathscr{B}_{sl} and the B_s production rate f_s

→ Inclusive yields of \$\phi\$ mesons & \$\phi\$+lepton are more abundant in B_s decays : used here to measure \$\mathcal{B}_{sl}\$ and \$f_s\$

*Here results only (details in Lake Louise Winter Institute 2011 talk by B. Hamiton)

$\mathcal{B}(B_s \rightarrow X \mid v_1) \otimes B_s$ fraction: f_s above $\Upsilon(4S)$

→ Measure number of events as a function of CM energy:

- **B-Hadron events =** $R_b \left[f_s \epsilon_{1s} + (1 f_s) \epsilon_1 \right]$
- Inclusive ϕ rate = $R_b \left[f_s P(B_s \bar{B}_s \to \phi X) \epsilon_{2s} + (1 f_s) P(B\bar{B} \to \phi X) \epsilon_2 \right]$
- ϕ rate in correlation with a high-momentum lepton =

 $R_b \left[f_s P(B_s \bar{B}_s \to \phi \ell \nu \mathbf{X}) \epsilon_{3s} + (1 - f_s) P(B\bar{B} \to \phi \ell \nu \mathbf{X}) \epsilon_3 \right]$

→Subtract light qq (q=u,d,s,c) continuum from off Υ (4S) peak and account for $B_{u,d}$ contributions from Υ (4S) data

$\mathcal{B}(B_s \rightarrow X \mid v_1) \otimes B_s$ fraction: f_s above $\Upsilon(4S)$

→ extract B_s production fraction f_s at each CM energy point and perform a global χ^2 fit to the various yields to extract the semi-leptonic $\mathcal{B}(B_s \rightarrow X \mid v_l)$

Conclusions

- **I)** Bottomonium spectroscopy: → Y(3S) sample
 - Radiative transitions using converted γ & search for $\eta_b(\text{1,2S}) \quad (+\Upsilon(\text{2S}) \text{ sample})$

\rightarrow RICH PHENOMENOLOGY and MANY NEW PRECISE RESULTS for $\chi_{bJ}(1,2P)$

- Search for $\mathbf{h}_{b}(1P)$ in $\Upsilon(3S) \rightarrow (\pi^{0}/\pi^{+}\pi^{-})\mathbf{h}_{b}(1P)$ [$\mathbf{h}_{b}(1P) \rightarrow \gamma \eta_{b}(1S)$]

→ 3.0 σ EVIDENCE in $\pi^0 h_b(1P)$ MODE

II) Search for the decay $D^0 \rightarrow \gamma \gamma$ & measurement of $D^0 \rightarrow \pi^0 \pi^0 \rightarrow \Upsilon(4S)$ sample and below "off-peak"

 \rightarrow IMPROVED MEASUREMENTS and $\mathcal{B}(\gamma\gamma)$ LIMIT in PREDICTED NP REGION

III) $\mathscr{B}(B_s \rightarrow X \mid v_l) \otimes B_s$ fraction: $f_s \rightarrow scan above the \Upsilon(4S)$

→ YES B_s STUDIED by BaBar ! : INTERESTING CROSS-CHECK MEASUREMENTS

BACKUP SLIDES

BABAR at **SLAC**

- 1.5 T solenoid
- Silicon vertex tracker
 - 5 layer, double-sided
- Drift chamber
 - Tracking + dE/dx
 - 40 stereo layers
- DIRC particle ID
 - Quartz bars, 11000 PMTs
- Csl(Tl) calorimeter
 - 6580 crystals
- Instrumented Flux Return
 - Iron + resistive plate chambers and limited streamer tubes

Integrated Luminosity(cal)

As of 2008/04/11 00:00

Integrated Luminosity(cal)

Bottomonium family

From Eichten et al., Rev. Mod. Phys. 80 (2008) 1161

Charmonium family

						_						
		$\psi(4S)$ or hybrid			-	Q	uant	tum n	umbers		Mass	Width
		$- \underline{\psi(2D)} = \overline{DD}$			-	n	L	J^{PC}	$n^{2S+1}L_J$	Name	(MeV)	(MeV ^a)
		- ψ(3S)			-	1	0	0^{-+}	$1^{1}S_{0}$	$\eta_c(1S)$	2980.4 ± 1.2	25.5 ± 3.4
	4.0	n (3S)		χ. (2P)	γ (2P) -	1	0	1	$1^{3}S_{1}$	J/ψ	3096.916 ± 0.011	93.4±2.1 keV
~		DD*		X(3872)?		1	1	0^{++}	$1^{3}P_{0}$	$\chi_{c0}(1P)$	3414.76 ± 0.35	10.4 ± 0.7
N.		Ψ(1 ³ D,)				1	1	1^{++}	$1^{3}P_{1}$	$\chi_{c1}(1P)$	3510.66 ± 0.07	0.89 ± 0.05
$\langle \rangle$		$D\bar{D} = -\frac{1}{10} \frac{1}{2}$	2 M(D)		(ρ,ω,γ)J/ψ	1	1	2++	$1^{3}P_{2}$	$\chi_{c2}(1P)$	3556.20 ± 0.09	2.06 ± 0.12
e,		$\eta_{c}(2S) = \frac{\psi(2S)}{V}$			-	1	1	1+-	$1^{1}P_{1}$	$h_c(1P)$	3525.93 ± 0.27	<1
ט		π^{0} h (1P) $\gamma_{\rm El}$		(10)	χ _{c2} (1P) -	1	2	1	$1^{3}D_{1}$	ψ(3770)	3771.1 ± 2.4	23.0 ± 2.7
S	2 5	$\pi\pi$, $\pi_c(\mathbf{I}^{\prime})$		$\chi_{c1}(TP)$		2	0	0^{-+}	$2^{1}S_{0}$	$\eta_c(2S)$	3638 ± 4	14 ± 7
as	5.5	$\gamma_{M1} \eta_{1} \chi_{c0}$	<u>(1P)</u>			2	0	1	$2^{3}S_{1}$	$\psi(2S)$	3686.093 ± 0.034	337 ± 13 keV
Σ					-	2	1	2++	$2^{3}P_{2}$	$\chi_{c2}(2P)$	3929 ± 5	29 ± 10
				Charr	nonium	_						
		/ψ		fa	mily -							
	3.0	<u>η_c(1S)</u>			-							
		$ J^{PC} = 0^{-+} \qquad 1^{} \qquad 1^{+-} \\ I_{-} = 0 \qquad 0 \qquad 1 $	0 ⁺⁺ 1	1 ⁺⁺ 1	2 ⁺⁺ -							
			-	1	-							

From Eichten et al., Rev. Mod. Phys. 80 (2008) 1161

- Identify γ→e⁺e⁻ conversions (χ² test; require m_γ < 30 MeV)
- Veto $\gamma \rightarrow e^+e^-$'s that form a π^0 candidate with any other γ
- Other cuts: thrust, multiplicity
- χ^2 fit to γ recoil energy spectrum
 - → Combinatoric background
 - → "peaking" components
 - $\rightarrow\,$ Fits to the Y(3S) & Y(2S) samples with the $\chi_{\rm bJ}(1,2P)$ and $\eta_{\rm b}\,$ mass/yields fitted parameter

Selection criteria for using $\gamma \rightarrow e^+e^-$ conversions

• Optimize S/ $\sqrt{(S+B)}$ for η_b signal MC vs. 1/10th data sample

Variable	E_{γ}^* Range (MeV)				
	$\Upsilon(3S)$	$\Upsilon(3S)$	$\Upsilon(2S)$		
	[180, 600]	[600, 1100]	[300, 800]		
nTRK	≥ 8	≥ 8	≥ 8		
$ \cos \theta_T $	< 0.85	< 0.75	< 0.85		
$ m_{\gamma\gamma} - m_{\pi^0} (\text{MeV}/c^2)$	> 10	> 20	> 20		
$E_{\gamma 2}$ (MeV)	> 90	> 75	> 70		
R_2	< 0.98	< 0.98	< 0.98		

• Define 4 E_{γ}^* regions of interest

"high" $E^*\gamma$ spectrum from Υ (2,3S) decays

• $\eta_{b}(1S)$ observed in inclusive γ spectrum for $\Upsilon(3S)$ and $\Upsilon(2S)$

 $- m_{\eta b(1S)} - m_{\Upsilon(1S)} = (69.3 \pm 2.8) \text{ MeV/c}^2$

- Lattice QCD \approx 50-60 MeV/c², pNRQCD \approx 40 MeV/c²

- $\chi_{bJ}(1,2P) \rightarrow \gamma \Upsilon(1S)$ transitions
 - Last measured ~20 years ago
 - J=0 yet to be observed
 - $(\chi_{b0}(1P) \rightarrow \gamma \Upsilon(1S)$ Belle prelim.)

Mode	PDG BF
$\chi_{b2}(2P) \to \gamma \Upsilon(1S)$	$7.1\pm1.0\%$
$\chi_{b1}(2P) \to \gamma \Upsilon(1S)$	$8.5\pm1.3\%$
$\chi_{b0}(2P) \to \gamma \Upsilon(1S)$	$(9\pm6) imes10^{-3}$
$\chi_{b2}(1P) \to \gamma \Upsilon(1S)$	$22 \pm 4\%$
$\chi_{b1}(1P) \to \gamma \Upsilon(1S)$	$35\pm8\%$
$\chi_{b0}(1P) \to \gamma \Upsilon(1S)$	< 6%

Summary on inclusive photon spectrum for Υ (2,3S) decays with converted γ

- Best $\mathscr{B}(\chi_{bJ}(nP) \rightarrow \gamma\Upsilon(mS))$
 - First direct measurements
 - Good agreement with theory

(Kwong & Rosner, PRD 38 279 (1988))

- Observation: $\Upsilon(3S) \rightarrow \gamma \chi_{b0,2}(1P)$ not $\gamma \chi_{b1}(1P)$
 - Inconsistent with any theory

(~ok with CLEO 2010 arXiv:1012.0589)

- New information on $m_{\eta_b(1S)}$?
 - Disagrees with prev. expt.
 - BTW significance ~2.7 σ for Υ (3S) only

Decay	BABAR (%)	Theory (%)
$\mathcal{B}(\chi_{b0}(2P) \to \gamma \Upsilon(2S))$	(< 2.9)	1.27
$\mathcal{B}(\chi_{b1}(2P) \to \gamma \Upsilon(2S)))$	19.1 ± 2.3	20.2
$\mathcal{B}(\chi_{b2}(2P) \to \gamma \Upsilon(2S)))$	8.2 ± 1.4	10.1
$\mathcal{B}(\chi_{b0}(2P) \to \gamma \Upsilon(1S))$	(< 1.2)	0.96
$\mathcal{B}(\chi_{b1}(2P) \to \gamma \Upsilon(1S))$	9.9 ± 1.1	11.8
$\mathcal{B}(\chi_{b2}(2P) \to \gamma \Upsilon(1S))$	$7.1^{+1.0}_{-0.9}$	5.3
$\mathcal{B}(\chi_{b0}(1P) \to \gamma \Upsilon(1S))$	(< 4.6)	3.2
$\mathcal{B}(\chi_{b1}(1P) \to \gamma \Upsilon(1S))$	36.2 ± 2.8	46.1
$\mathcal{B}(\chi_{b2}(1P) \to \gamma \Upsilon(1S))$	$20.2^{+1.6}_{-1.8}$	22.2

Source	I = 0	I = 1	I = 2
Source	$J \equiv 0$	J = 1	$J \equiv Z$
BABAR	55 ± 10	< 22	216 ± 25
Moxhay-Rosner	25	25	150
Grotch <i>et al.</i>	114	3.4	194
Daghighian-Silverman	16	100	650
Fulcher	10	20	30
Lähde	150	110	40
Ebert <i>et al.</i>	27	67	97

Source	$m_{\Upsilon(1S)} - m_{\eta_b(1S)} \; ({\rm MeV}/c^2)$
Kniehl et al.	41 ± 14
Recksiegel & Sumino	44 ± 11
HPQCD	61 ± 14
Fermilab & MILC	54.0 ± 12.4
Meinel	60.3 ± 7.0
PDG	69.3 ± 2.8
This work	56.6 ± 3.0

The Discovery of the h_c(1P) state of charmonium at CLEO

- Require $\pi^0 \gamma$ recoil mass to be consistent with the η_c mass
- Plot π^0 recoil mass

V. Tisserand, LAPP

Search for $\Upsilon(3S) \rightarrow \pi^+\pi^-h_b(1P)$: Peaking Bkgd

Search for $\Upsilon(3S) \rightarrow \pi^+\pi^-h_b(1P): m_{recoil}(\pi^+\pi^-)$

Previous $D^0 \rightarrow \gamma \gamma$ and $D^0 \rightarrow \pi^0 \pi^0$ measurements

Q=m(D*)-m(D⁰)-m(π_{soft}) 14/fb near Y(4S): (19.2±9.3) cands. $\mathscr{B}(D^0 \rightarrow \gamma \gamma)$ <2.4×10⁻⁶ 90%CL

In BaBar use $D^0 \rightarrow K^0_{s} \pi^0$ as reference channel:

$$B(D^0 \to \gamma \gamma) = \frac{\frac{1}{\varepsilon_{\gamma \gamma}} N(D^0 \to \gamma \gamma)}{\frac{1}{\varepsilon_{K_s^0 \pi^0}} N(D^0 \to K_s^0 \pi^0)} \times B(D^0 \to K_s^0 \pi^0)$$

Inclusive ϕ (+lepton) as a probe of B_s decays

- B_s decay chain leads to large ϕ yield compared to $B_{u/d}$ decays:
 - $B(B_s \rightarrow D_s X) \times \mathcal{B}(D_s \rightarrow \phi X) \approx 15\% \text{ (PDG2010)}$
 - ► vs $\mathcal{B}(B \rightarrow \phi X) \approx 3.43\%$ (PDG2010)
- ϕ +lepton:
 - ► $B_s \rightarrow D_s / v X_1 \rightarrow \phi / v X_2 \approx 1.3\%$ (same B_s)
 - ▶ **vs** $B \rightarrow DI vX_1 \rightarrow \phi I vX_2 \approx 0.1\%$ (same *B*)
 - ► $B_s \rightarrow I \nu X_1 \& B_s \rightarrow \phi X_2 \approx 1.4\%$ (different B_s)
 - ▶ vs $B \rightarrow I vX_1 \& B \rightarrow \phi X_2 \approx 0.4\%$ (different B)

→ Inclusive yields of $\phi \& \phi$ +lepton can be used to measure both B_s production rate $(B_s \overline{B}_s / B\overline{B})$ and its semileptonic branching ratio

▶ Backgrounds sources: Continuum $e^+e^- \rightarrow q\bar{q} \& B_{u/d}\bar{B}_{u/d}$

Analysis Method

- Measure number of events, ϕ rate, and ϕ rate in correlation with a high-momentum lepton as a function of CM energy
- Use below *BB* threshold data to subtract continuum $e^+e^- \rightarrow qq$ (*q*=*u*,*d*,*s*,*c*) contributions:
 - *B* hadron events:

$$R_b \left[f_s \epsilon_{1s} + (1 - f_s) \epsilon_1 \right]$$

- Inclusive ϕ rate:

$$R_b \left[f_s P(B_s \bar{B}_s \to \phi \mathbf{X}) \epsilon_{2s} + (1 - f_s) P(B \bar{B} \to \phi \mathbf{X}) \epsilon_2 \right]$$

- Inclusive ϕ +lepton rate:

 $R_b \left[f_s P(B_s \bar{B}_s \to \phi \ell \nu \mathbf{X}) \epsilon_{3s} + (1 - f_s) P(B \bar{B} \to \phi \ell \nu \mathbf{X}) \epsilon_3 \right]$

• Event rate & ϕ rate $\rightarrow f_s$

 $\overline{f_s} \equiv \frac{\# B_s \text{ events}}{\text{all } B \text{ hadron events}}$

• $P(B_s \mathcal{B}_s \to \phi l X)$ contains info on $\mathcal{B}(B_s \to l \nu X)$

Measurement

- Typical mass plots for inclusive ϕ and ϕ with lepton at $10.8225 < E_{\rm CM} < 10.8475$ GeV
 - (At same energy, so right plot is subset of events on left)

Measurement

Simultaneous Extraction of $Br(B_s \rightarrow lvX) \& f_s$

Continuum-subtracted rates given by: Event rate = $R_b [f_s \epsilon_{1s} + (1 - f_s) \epsilon_1]$

$$\phi \text{ rate} = R_b \left[f_s P(B_s \bar{B}_s \to \phi \mathbf{X}) \epsilon_{2s} + (1 - f_s) P(B \bar{B} \to \phi \mathbf{X}) \epsilon_2 \right]$$

 $\phi - \ell \text{ rate} = R_b \left[f_s P(B_s \bar{B}_s \to \phi \ell \nu \mathbf{X}) \epsilon_{3s} + (1 - f_s) P(B \bar{B} \to \phi \ell \nu \mathbf{X}) \epsilon_3 \right]$

- $B_{u/d}$ contributions are measured in data taken at $\Upsilon(4S)$
- f_s extracted at each energy point from number of events and ϕ yield
- *B_s* contributions depend on:
 - $\mathcal{B}(B_s \to D_s X_i)$ (PDG), $\mathcal{B}(B_s \to l \nu X_j)$, $\mathcal{B}(D_s \to l \nu X_k)$ (PDG), $\mathcal{B}(D_s \to \phi X_m)$ (PDG), $\mathcal{B}(D_s \to \phi l \nu X_n)$ (PDG) and others
- A χ^2 fit is performed to the measured yields to extract Br($B_s \rightarrow l\nu X$)

Fit to the Data in range 10.7375 GeV – 11.2 GeV

Measurement of f_s (# B_s events/#B hadron events)

- Bins near $\Upsilon(5S)$ peak (right plot) consistent with on peak results from
 - Belle: (19.3 ±2.9)% Phys. Rev. D 76, 012002 (2007)
 - CLEO: $(16.8 \pm 2.6^{5.7}_{3.4})$ % Phys. Rev. D **75**, 012002 (2007)

Comparison to theory

- Theory plot: N. A. Törnqvist, Phys. Rev. Lett. 53, 878 (1984)
 - Coupledchannel analysis
- Blue arrows show the range of the theory plots on the BABAR plots

