

A Forward-Backward Asymmetry in Top Quark Pair Production

The CDF Collaboration D. Amidei, University of Michigan

dilepton mode Events  $A_{data} = 0.057 \pm 0.028$ 60 450 🗕 data  $A_{t\bar{t}+bkg} = -0.011 \pm 0.003$  $\int L dt = 5.1 \text{ fb}^{-1}$ tt̄ + bkg  $A_{*} = -0.013 \pm 0.002$ 400 bkg  $A_{bkg}$  = -0.005 ± 0.008 350 40 300 250 200 20 150 100 50 0 🖻 0 -2 0  $\frac{2}{\Delta y} = y_{t} - y_{t}$ -1 -2 -1 0 1  $\Delta \mathbf{y}_{t}^{lab}$ 

lepton + jets mode

# top quark pair production

hard scatter cm-frame cross-section

$$\sigma \sim \frac{\alpha_s^2}{q^2} \left[ 1 + \cos^2 \theta + f(q^2) \cos \theta \right] \cdot g(s)$$



- specified by  $\alpha$ ,  $q^2$ ,  $\theta$ , s
- $\alpha$ ,  $q^2$  well measured in  $\sigma$  and M<sub>tt</sub> spectrum. SM-like.
- here: the production angle  $\theta$ 
  - in particular: asymmetry in production angle with respect to beamline

$$A = \frac{F - B}{F + B}$$

- also of interest: q<sup>2</sup> dependence
- hadron collisions:

$$- \ \theta \to \Delta y$$

# tt charge asymmetry in NLO QCD

• Halzen, Hoyer, Kim; Brown, Sadhev, Mikaelian; Kuhn, Rodrigo; Ellis, Dawson, Nason; Almeida, Sterman, Vogelsang; Bowen, Ellis, Rainwater



- verified for QED in  $e^+e^- \rightarrow \mu^+\mu^-$
- strong interaction C tests at high energy have been confounded by difficulty of jet charge
- reconstructed top pair system has accessible information on charge flow
  - test C in strong interactions at large q<sup>2</sup>

prior measurements (lepton + jets)

- CDF, 1.9 fb<sup>-1</sup>, inclusive, corrected to "parton-level" ٠
  - tt rest frame  $A^{t\bar{t}} = 0.24 \pm 0.14$
  - NLO QCD  $A^{t\bar{t}} = 0.06 \pm 0.01$

PRL 101, 202001 (2008)

- D0, inclusive, background subtracted "data-level" ٠
  - PRL 100, 142002 (2008)  $A^{t\bar{t}} = 0.12 \pm 0.08$ 0.9 fb<sup>-1</sup> – tt rest frame  $A^{t\bar{t}} = 0.08 \pm 0.04$ 4.3 fb<sup>-1</sup> **ICHEP 2010**
  - $A^{tt} = 0.02 \pm 0.01$ – NLO QCD

# theoretical interest

- exotic gluons
  - massive chiral color
  - RS gluon
  - color sextets, anti-triplets



- FV IVB
  - Z′
  - FV W´Z´ t-channel
- FV scalars



- model building must contend with
  - total  $\sigma$  in good agreement with SM
  - d $\sigma$ /dM<sub>tt</sub> in good agreement with SM

lepton + jets: selection and reconstruction

$$q\bar{q} \rightarrow g \rightarrow t\bar{t} \rightarrow (W^+b)(W^-\bar{b}) \rightarrow (l^+\upsilon b)(q\bar{q}\bar{b}) \rightarrow l^+ + E_T + 4j + \geq 1 btag$$



- 5.3 fb-1
- lepton ( $e/\mu$ )  $E_t/p_t > 20 \text{ GeV}$  (/c)
- missing  $E_t > 20 \text{ GeV}$
- .g.e. 4 jets E<sub>t</sub> > 20 GeV
  - at least one b-tagged jet
- 1260 events  $bkg = 283 \pm 50$
- jet-parton match and top reconstruction via  $M_W$ ,  $M_t$  constraints and simple  $\chi^2$

top pair rapidity difference

- a frame invariant variable
  - rapidity difference

$$\Delta y = q \cdot (y_l - y_h)$$
$$= y_t - y_{\bar{t}}$$

- interpretation

$$\Delta y = 2y_t^{t\bar{t}}$$



> asymmetry in  $\Delta y_{tt}$  equals asymmetry in top quark production angle in tt rest frame

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$
$$= \frac{N(\cos \theta^* > 0) - N(\cos \theta^* < 0)}{N(\cos \theta^* > 0) + N(\cos \theta^* < 0)}$$

# expected QCD asymmetries

- three different calculations for expectation:
  - Pythia: LO simulated sample
  - MCFM: NLO calculation at "parton level"
  - MC@NLO + CDFSIM: simulated sample for input the analysis

| model  | level           | $A^{\mathrm{t}ar{\mathrm{t}}}$ | =               |
|--------|-----------------|--------------------------------|-----------------|
| MCFM   | parton          | $0.058 \pm 0.009$              | truth           |
| MC@NLO | parton          | $0.052 \pm 0.008$              | truth           |
| MC@NLO | $t\bar{t}$      | $0.024 \pm 0.005$              | sim + reco      |
| MC@NLO | $t\bar{t}$ +bkg | $0.017 \pm 0.004$              | sim + reco +bkg |

### • n.b.

- prediction for data level asymmetry < stat precision (0.028)</li>
- Pythia tt model remains good approximation of SM

# inclusive $\Delta y$



### then

- bkg subtract
  - yields tt "signal" at reco level
- unfold acceptance & resolution
  - yields tt at "parton level"



| sample | level                   | $A^{{ m t}{ar { m t}}}$ |
|--------|-------------------------|-------------------------|
| data   | data                    | $0.057 \pm 0.028$       |
| MC@NLO | $t\bar{t}$ +bkg         | $0.017 \pm 0.004$       |
| data   | $\operatorname{signal}$ | $0.075\pm0.037$         |
| MC@NLO | $t \overline{t}$        | $0.024 \pm 0.005$       |
| data   | parton                  | $0.158 \pm 0.074$       |
| MCFM   | parton                  | $0.058 \pm 0.009$       |

$$q\bar{q} \rightarrow g \rightarrow t\bar{t} \rightarrow (W^+b)(W^-\bar{b}) \rightarrow (l^+\upsilon b)(l^-\overline{\upsilon}\overline{b}) \rightarrow l^+ + l^- + E_T + 2j$$



selection and reconstruction

- 5.1 fb<sup>-1</sup>
- 2 OS lepton (e/µ) E<sub>t</sub>/p<sub>t</sub> > 20 GeV (/c)
   M<sub>II</sub>.ne. M<sub>Z</sub>
- missing  $E_t > 25 \text{ GeV}$
- .g.e. 2 jets E<sub>t</sub> > 15 GeV
- H<sub>t</sub> > 200 GeV
- 334 events  $bkg = 87 \pm 17$

### two rapidity differences

- frame invariant variables
  - rapidity difference

$$\Delta y_t = y_t - y_{\bar{t}}$$

lepton rapidity difference!

$$\Delta \eta_l = \eta_{l^+} - \eta_{l^-}$$





## lepton rapidity difference in dilepton control samples



### dilepton + MET+ 0 jets

dilepton + MET+ 1 jet



$$A_{obs}^{\Delta \eta_l} = 0.040 \pm 0.057$$
$$A_{pred}^{\Delta \eta_l} = -0.009 \pm 0.053$$

# lepton rapidity difference in dilepton top signal



 $A_{obs}^{\Delta \eta_l} = 0.138 \pm 0.054$  $A_{pred}^{\Delta \eta_l} = -0.022 \pm 0.022$ 

KS = 0.8%

top reconstruction in the dilepton sample

- jet-parton match and top reconstruction via
  - $M_W$ ,  $M_t$  constraints
  - and likelihoods of  $p_T^{t\bar{t}}, p_z^{t\bar{t}}, M_{t\bar{t}}$



# top rapidity difference in dilepton sample



 $A_{obs}^{\Delta y_{t}} = 0.138 \pm 0.054$  $A_{pred}^{\Delta \eta_{l}} = -0.015 \pm 0.023$ 

KS = 1.4%

top rapidity difference in dilepton sample w/ bkg subtraction



correcting to the parton level



# compare to best fit model

- top rapidity difference
  - KS = 51.2 %



• lepton rapidity difference

KS = 44.8%

# M<sub>tt</sub> dependence of the asymmetry



### M<sub>tt</sub> Spectrum

A(M<sub>tt</sub>) from MCFM

• A(M<sub>tt</sub>) of interest in QCD and in other theories

# color octet model

- to test methodology on large asymmetry
- color octets with axial couplings
  - after Ferrario and Rodrigo arXiv:0906.5541
  - thanks to T. Tait for Madgraph
- sample "Octet A"
  - $g_v = 0, |g_A = 3|$
  - $g^{q}{}_{A} = g^{t}{}_{A}$
  - M<sub>G</sub> = 2.0 TeV
  - xsec ratio:  $\sigma/\sigma_{sm}$  = 1.02
  - M<sub>tt</sub> spectrum ~ compares to Pythia
  - Model: True  $A_{tt} = 0.16$  Reco  $A_{tt} = 0.08$
  - Data: Parton  $A_{tt} = 0.15$ , Reco  $A_{tt} = 0.06$
- a test sample. not a hypothesis
- use to study parton level corrections and treatment of mass dependence
  - 2-bin  $A(M_{tt})$
  - optimal partition at M =  $450 \text{ GeV/c}^2$





# color octet model

- to test methodology on large asymmetry
- color octets with axial couplings
  - after Ferrario and Rodrigo arXiv:0906.5541
  - thanks to T. Tait for Madgraph
- sample "Octet A"
  - $g_v = 0, |g_A = 3|$
  - $g^{q}{}_{A} = g^{t}{}_{A}$
  - M<sub>G</sub> = 2.0 TeV
  - xsec ratio:  $\sigma/\sigma_{sm}$  = 1.02
  - M<sub>tt</sub> spectrum ~ compares to Pythia
  - Model: True  $A_{tt} = 0.16$  Reco  $A_{tt} = 0.08$
  - Data: Parton  $A_{tt} = 0.15$ , Reco  $A_{tt} = 0.06$
- a test sample. not a hypothesis
- use to study parton level corrections and treatment of mass dependence
  - 2-bin  $A(M_{tt})$
  - optimal partition at M =  $450 \text{ GeV/c}^2$





A<sup>tt</sup>(M<sub>tt, i</sub>)



A<sup>tt</sup>(M<sub>tt, i</sub>)



23

# data: $\Delta y$ at low and high mass



 $\Delta y_{\text{lh}}$  at high mass by lepton charge



 $\Delta y_{lh}$  at high mass by lepton charge



consistent with CP conservation

 argues against experimental artifact, as detection/reconstruction are sign independent

26

# corrected asymmetries

- background subtraction
- unfold to parton level in 4 bins in  $\Delta y$  and  $M_{tt}$ 
  - low mass forward low mass backward
  - high mass forward high mass backward

| selection              | $M < 450 \ { m GeV}/c^2$     | $M \ge 450 \ { m GeV}/c^2$  |
|------------------------|------------------------------|-----------------------------|
| data                   | $-0.016 \pm 0.034$           | $0.210\pm0.049$             |
| MC@NLO $t\bar{t}$ +bkg | $+0.012 \pm 0.006$           | $0.030\pm0.007$             |
| data signal            | $-0.022 \pm 0.039 \pm 0.017$ | $0.266 \pm 0.053 \pm 0.032$ |
| MC@NLO $t\bar{t}$      | $+0.015 \pm 0.006$           | $0.043 \pm 0.009$           |
| data parton            | $-0.116 \pm 0.146 \pm 0.047$ | $0.475 \pm 0.101 \pm 0.049$ |
| MCFM                   | $+0.040 \pm 0.006$           | $0.088 \pm 0.013$           |

### summary

• significant inclusive  $A_{fb}(\Delta y)$  is observed in two decay modes

|   |              | lepton + jets     | dilepton          |  |
|---|--------------|-------------------|-------------------|--|
| _ | data         | $0.054 \pm 0.028$ | $0.138 \pm 0.054$ |  |
| — | bkg sub      | $0.075 \pm 0.037$ | $0.205 \pm 0.076$ |  |
| _ | parton level | $0.158 \pm 0.074$ | $0.417 \pm 0.157$ |  |
| _ | MCFM         | $0.058 \pm 0.009$ |                   |  |

- in dileptons  $A_{fb}(\eta_{\parallel})$  is consistent with  $A_{fb}(\Delta y)$ 
  - this variable very well verified with Z
  - top 0 and 1 jet control regions consistent with prediction
- in lepton+jets,  $A_{fb}(\Delta y)$  is observed to depend on  $M_{tt}$

|   |              | $M_{tt}$ < 450 GeV/c <sup>2</sup> | M <sub>tt</sub> ≥ 450 GeV/c² |
|---|--------------|-----------------------------------|------------------------------|
| _ | data         | $-0.016 \pm 0.034$                | $0.210 \pm 0.049$            |
| _ | parton level | $116 \pm 0.153$                   | $0.475 \pm 0.112$            |
| _ | MCFM         | $0.040 \pm 0.006$                 | $0.088 \pm 0.013$            |
|   |              |                                   |                              |

reverses sign under interchange of lepton (top) charge: CP conservation



# Backup

### bonus question

• Highest Q<sup>2</sup> prior test of C in strong interactions ?

PHYSICAL REVIEW D

#### VOLUME 17, NUMBER 7

#### 1 APRIL 1978

### Test of charge-conjugation invariance in $\overline{p}p$ interactions

R. Cester, V. L. Fitch, R. W. Kadel,\* R. C. Webb, J. D. Whittaker, and M. S. Witherell Department of Physics, Princeton University, Princeton, New Jersey 08540

#### M. May

Brookhaven National Laboratory, Upton, L.I., New York 11973 (Received 12 December 1977)

Using  $p \bar{p}$  interactions at  $\sqrt{s} = 5.44$  GeV we have tested for evidence of C noninvariance through a comparison of the transverse-momentum distributions of particle and antiparticle produced at 90° in the center of mass. We found an average charge asymmetry for pions with  $p_1$  between 0.5 and 2.7 GeV/c of  $\Delta = (N_+ - N_-)/(N_+ + N_-) = 0.006 \pm 0.009$ . This corresponds to a limit on the magnitude of the C-violating (relative to C-conserving) amplitude of Rea  $\leq 0.0045$ .

lepton rapidity difference in dilepton control samples

SS + MET+ 2 jets

candidates with  $H_t < 200 \text{ GeV}$ 



| $A_{\rm obs}^{\Delta\eta_\ell, Z \to \ell\ell + n \text{ jets}}$ | Data                              | Prediction         |
|------------------------------------------------------------------|-----------------------------------|--------------------|
| $Z(\rightarrow ee) + 0$ jet                                      | $-0.045 \pm 0.003$ (stat.)        | $-0.046 \pm 0.002$ |
| $Z(\rightarrow \mu\mu) + 0$ jet                                  | $-0.034 \pm 0.003$ (stat.)        | $-0.032 \pm 0.002$ |
| $Z(\rightarrow ee) + 1$ jet                                      | $-0.037 \pm 0.006 (\text{stat.})$ | $-0.048 \pm 0.004$ |
| $Z(\rightarrow \mu\mu) + 1$ jet                                  | $-0.031 \pm 0.007 (\text{stat.})$ | $-0.030 \pm 0.003$ |
| $Z(\rightarrow ee) + \ge 2$ jet                                  | $-0.065 \pm 0.012$ (stat.)        | $-0.056 \pm 0.008$ |
| $Z(\rightarrow \mu\mu) + \geq 2$ jet                             | $-0.058 \pm 0.014 (\text{stat.})$ | $-0.025 \pm 0.007$ |

top rapidity difference in dilepton sample w/ bkg subtraction



expected correlation of  $\Delta\eta$  and  $\Delta y$  for best fit



34

# Asymmetry in Dileptons

• High and and low mass



top reconstruction

$$l^+ + I\!\!E_T + 4j + \ge 1 btag \rightarrow (l^+ \upsilon b)(q\overline{q}\overline{b}) \rightarrow (W^+ b)(W^-\overline{b}) \rightarrow t\overline{t}$$

- Jet-parton assignment,  $p_z(v)$  via minimum of simple  $\chi^2$ 
  - Constraints:  $M_W$  = 80.4 GeV/c2, Mt = 175 GeV/c<sup>2</sup>, btag = b
  - Float jet p<sub>t</sub> within errors



# inclusive distributions (both lepton charges)



• symmetric!

37

### separate by lepton charge



### separate by lepton charge



### correct to the parton level

- dN/dy parton level histogram
  - parton level bins j w/ contents P<sub>i</sub>
- the top data signal
  - $T_i = S_{ij} \times A_j \times P_j$
- where
  - the A<sub>i</sub> are the acceptances for each bin
  - the S<sub>ii</sub> are the bin-to-bin migration ratios
  - both are estimated with Pythia
- dN/dy data level histogram
  - data level bins i w/ contents D<sub>i</sub>
  - Sum of top and bkgrd:  $D_i=T_i+B_i$
- to propagate data to parton level:
  - $P_j = A_j^{-1} \times S_{ji}^{-1} \times (D_i B_i)$
- result is optimized when number of bins = 4

# backgrounds

- detailed model for all background components
- fully simulated model samples are reconstructed like data
- asymmetries small (but not zero)



### tt rest frame

lab frame

# backgrounds

- can be checked in events without b-tags. S:B = 0.3۲
- data and predictions in good agreement



### tt rest frame

lab frame

# Systematic Uncertainties Inclusive

| effect               | $\delta A^{\mathrm{p}\bar{\mathrm{p}}}$ | $\delta A^{\mathrm{t}\overline{\mathrm{t}}}$ |
|----------------------|-----------------------------------------|----------------------------------------------|
| background magnitude | 0.015                                   | 0.011                                        |
| background shape     | 0.014                                   | 0.007                                        |
| ISR/FSR              | 0.010                                   | 0.001                                        |
| JES                  | 0.003                                   | 0.007                                        |
| PDF                  | 0.005                                   | 0.005                                        |
| color reconnection   | 0.001                                   | 0.004                                        |
| LO MC generator      | 0.005                                   | 0.005                                        |
| total                | 0.024                                   | 0.017                                        |

Asymmetry is a function of  $\Delta y$  and  $M_{tt}$ 

• in tt frame, QCD asymmetry has linear dependence on  $\Delta y$ ,  $M_{t\bar{t}}$ 



NLO prediction from MCFM

•  $\Delta y$ ,  $M_{t\bar{t}}$  dependence generally of interest in other theories

# $A(\Delta y)$ , parton level, data



45

 $A^{tt}(M_{tt, i})$  by charge



# the two-bin boundary

- simplest A(M): two bins
- high and low mass
- where to put boundary?

• look at significance 
$$S_A = \frac{A}{\delta A}$$
 at high mass vs. boundary

➢ best boundary: 450 GeV/c<sup>2</sup>

| OctetA             |                   |              | OctetB            |              |
|--------------------|-------------------|--------------|-------------------|--------------|
| bin-edge           | $A^{\tt tt}$      | significance | $A^{\tt tt}$      | significance |
| $(\text{GeV}/c^2)$ |                   |              |                   |              |
| 345                | $0.082\pm0.028$   | 2.90         | $0.168 \pm 0.028$ | 5.99         |
| 400                | $0.128 \pm 0.036$ | 3.55         | $0.235 \pm 0.035$ | 6.74         |
| 450                | $0.183 \pm 0.047$ | 3.91         | $0.310 \pm 0.044$ | 7.08         |
| 500                | $0.215 \pm 0.060$ | 3.60         | $0.369 \pm 0.054$ | 6.81         |
| 550                | $0.246 \pm 0.076$ | 3.25         | $0.425 \pm 0.066$ | 6.43         |
| 600                | $0.290 \pm 0.097$ | 2.97         | $0.460 \pm 0.081$ | 5.70         |

# the two-bin boundary

- simplest A(M): two bins
- high and low mass
- where to put boundary?

• look at significance 
$$S_A = \frac{A}{\delta A}$$
 at high mass vs. boundary



A<sup>tt</sup> at high and low mass: parton level



49

# tests of unfold procedure

| Sample  | $A^{t\bar{t}}$ level | $M_{t\bar{t}} < 450 \ {\rm GeV}/c^2$ | $M_{t\bar{t}} \ge 450 \text{ GeV}/c^2$ |
|---------|----------------------|--------------------------------------|----------------------------------------|
| ΡΥΤΗΙΛ  | MC truth             | 0.002                                | 0.001                                  |
|         | reconstructed        | $-0.011 \pm 0.006$                   | $-0.013 \pm 0.008$                     |
|         | corrected            | $0.001\pm0.018$                      | $0.006 \pm 0.014$                      |
| MC@NLO  | MC truth             | 0.043                                | 0.070                                  |
|         | reconstructed        | $0.015\pm0.006$                      | $0.043\pm0.009$                        |
|         | corrected            | $0.066\pm0.014$                      | $0.086\pm0.011$                        |
| Octet A | MC truth             | 0.081                                | 0.276                                  |
|         | reconstructed        | $0.024 \pm 0.035$                    | $0.183 \pm 0.010$                      |
|         | corrected            | $0.054\pm0.022$                      | $0.308 \pm 0.016$                      |
| Octet B | MC truth             | 0.150                                | 0.466                                  |
|         | reconstructed        | $0.078 \pm 0.036$                    | $0.310\pm0.009$                        |
|         | corrected            | $0.187 \pm 0.024$                    | $0.476 \pm 0.015$                      |

# sys uncertainty of unfold procedure

| Source             | $M < 450~{\rm GeV}/c^2$ | $M \ge 450 \ { m GeV}/c^2$ |
|--------------------|-------------------------|----------------------------|
| background size    | 0.017                   | 0.032                      |
| background shape   | 0.003                   | 0.003                      |
| JES                | 0.005                   | 0.012                      |
| ISR/FSR            | 0.012                   | 0.008                      |
| color reconnection | 0.009                   | 0.004                      |
| PDF                | 0.018                   | 0.004                      |
| physics model      | 0.035                   | 0.035                      |
| total              | 0.047                   | 0.049                      |

TABLE XII: Systematic uncertainties in the two-mass bin unfold

# studies of A<sup>tt</sup> at the data level

| selection           | N events | all $M$             | $M < 450~{\rm GeV}/c^2$ | $M \geq 450~{\rm GeV}/c^2$ |
|---------------------|----------|---------------------|-------------------------|----------------------------|
| standard            | 1260     | $0.057 {\pm} 0.028$ | $-0.016 {\pm} 0.034$    | $0.212{\pm}0.049$          |
| electrons           | 735      | $0.026{\pm}0.037$   | $-0.020 \pm 0.045$      | $0.120{\pm}0.063$          |
| muons               | 525      | $0.105 {\pm} 0.043$ | $-0.012 \pm 0.054$      | $0.348 {\pm} 0.080$        |
| data $\chi^2 < 3.0$ | 338      | $0.030{\pm}0.054$   | $-0.033 \pm 0.065$      | $0.180 \pm 0.099$          |
| data no-b-fit       | 1260     | $0.062 {\pm} 0.028$ | $0.006 \pm 0.034$       | $0.190 \pm 0.050$          |
| data single b-tag   | 979      | $0.058{\pm}0.031$   | $-0.015 \pm 0.038$      | $0.224{\pm}0.056$          |
| data double b-tag   | 281      | $0.053 {\pm} 0.059$ | $-0.023 \pm 0.076$      | $0.178 {\pm} 0.095$        |
| data anti-tag       | 3019     | $0.033{\pm}0.018$   | $0.029{\pm}0.021$       | $0.044{\pm}0.035$          |
| pred anti-tag       | -        | $0.010 {\pm} 0.007$ | $0.013 {\pm} 0.008$     | $0.001{\pm}0.014$          |
| pre-tag             | 4279     | $0.040 {\pm} 0.015$ | $0.017{\pm}0.018$       | $0.100{\pm}0.029$          |
| pre-tag no-b-fit    | 4279     | $0.042{\pm}0.015$   | $0.023{\pm}0.018$       | $0.092{\pm}0.029$          |

# jet multiplicity dependence

- the NLO QCD asymmetry has a strong  $\mathbf{N}_{\text{jet}}$  dependence

| selection | all $M$            | $M < 450~{\rm GeV}/c^2$ | $M \geq 450~{\rm GeV}/c^2$ |
|-----------|--------------------|-------------------------|----------------------------|
| inclusive | $0.024 \pm 0.004$  | $0.015 \pm 0.005$       | $0.043 \pm 0.007$          |
| 4-jet     | $0.048 \pm 0.005$  | $0.033 \pm 0.006$       | $0.078 \pm 0.009$          |
| 5-jet     | $-0.035 \pm 0.007$ | $-0.032 \pm 0.009$      | $-0.040 \pm 0.012$         |

• data: the high mass asymmetry is significantly reduced for 5 jet events

| selection  | N events | all $M$             | $M < 450~{\rm GeV}/c^2$ | $M \geq 450~{\rm GeV}/c^2$ |
|------------|----------|---------------------|-------------------------|----------------------------|
| data 4-jet | 939      | $0.065 {\pm} 0.033$ | $-0.023 \pm 0.039$      | $0.26{\pm}0.057$           |
| data 5-jet | 321      | $0.034{\pm}0.056$   | $0.0049{\pm}0.07$       | $0.086{\pm}0.093$          |

· need to study other models, color flow, asymmetry reco in ttj

# frame dependence

• a selection of cross-checks in the lab frame using  $-qy_h = y_t^{p\overline{p}}$ 

| selection     | all $M$             | $M < 450~{\rm GeV}/c^2$ | $M \ge 450 \ { m GeV}/c^2$ |
|---------------|---------------------|-------------------------|----------------------------|
| data reco     | $0.073 {\pm} 0.028$ | $0.059 {\pm} 0.034$     | $0.103{\pm}0.049$          |
| MC@NLO        | $0.017 {\pm} 0.004$ | $-0.008 \pm 0.005$      | $0.022{\pm}0.007$          |
| $A_h^+$       | $-0.076 \pm 0.039$  | $-0.085 \pm 0.047$      | $-0.053 \pm 0.072$         |
| $A_h^-$       | $0.070 {\pm} 0.040$ | $0.028 {\pm} 0.050$     | $0.148{\pm}0.066$          |
| single b-tags | $0.095 {\pm} 0.032$ | $0.079 {\pm} 0.034$     | $0.130 {\pm} 0.057$        |
| double b-tags | $-0.004 \pm 0.060$  | $-0.023 \pm 0.076$      | $0.028 {\pm} 0.097$        |

- the high mass asymmetry is less significant in the lab frame
  - like QCD ?
- the high mass double tag asymmetry is low in the lab frame
  - statistics?
  - $|\eta| < 1.0$  for b-tags. acceptance + physics?

# Tevatron vs LHC (from Kuhn and Rodrigo)







x=x<sub>1</sub>-x<sub>5</sub>5

# Model



56

# Production Angle $\rightarrow$ Rapidity

- from qq to lab
  - black = SM
  - red = SM +0.34 $\cos\theta$

