## **Top Physics at Tevatron**





#### Hyun Su Lee

#### The University of Chicago On behalf of the CDF and D0 collaborations

Les Rencontres de Physique de la Vallee d'Aoste

La Thuile 2011, Hyunsu Lee, The University of Chicago

#### The top quark

- It was discovered in Fermilab at 1995
  Single top observation at 2009
- The heaviest known elementary particle
  It's about Electro Weak Symmetry Breaking scale
  - Largest coupling with Higgs boson
- Lifetime is very short
  - Decay before hadronization
  - Study "bare quark"
- Special role in many new physics model

Ideal place to study new physics



#### Top quark production and decay at Tevatron



#### What we are interesting?



#### Today's talk



#### tt cross section

• Testing perturbative QCD at high energy,  $\sigma_{tt}^{SM}=7.45 \text{ pb}$ 



#### tt cross section



#### All results are consistent with Standard Model

### **Systematic limited measurements**

La Thuile 2011, Hyunsu Lee, The University of Chicago

#### Top quark mass

- Top quark is the heaviest known elementary particle
- Top quark mass is not predicted by SM
- Can constrain SM Higgs boson mass
  - Important contribution in radiative correction of W
  - Important test of SM



#### Top mass measurement



PRL 105 (2010) 252001



### **Tevatron Combination**





World average =  $173.3 \pm 1.1 \text{ GeV/c}^2$ ~0.61 % Precision

Very Precise measuremet Understanding of systematic is the key

Legacy measurement for a while

All results are consistent each others

#### **Global EWK fit and Higgs constraints**

## LEP Electro Weak Working Group July 2010 Update



### t and t mass difference

- If CPT is conserved,  $\Delta M_{top}$ should be zero (SM)
- We break this assumption and measure the  $\Delta M_{top}$
- We use similar technique to mass measurements

**1.0 fb**<sup>-1</sup> | Lepton+Jets **Matrix Element technique** 

 $\Delta M_{top} = +3.8 \pm 3.7 \text{ GeV/c}^2$ 

#### PRL 103 (2009) 132001

La Thuile 2011,



#### Why top quark width ?

• It is intrinsic parameter of SM

Very precise estimation using NLO calculation (~1% precision)

$$\Gamma_t = \Gamma_t^0 \left( 1 - \frac{M_W^2}{m_t^2} \right)^2 \left( 1 + 2\frac{M_W^2}{m_t^2} \right) \left[ 1 - \frac{2\alpha_s}{3\pi} \left( \frac{2\pi^2}{3} - \frac{5}{2} \right) \right]$$

✤ 1.3 GeV at M<sub>top</sub> = 172.5 GeV/c<sup>2</sup>

• Deviation from SM indicate new physics

Charged Higgs decay, FCNC, and other exotic models



• Resolving Top quark life time

$$au = \frac{\hbar}{\Gamma}$$
 Short life time (decay before hadronization)

#### Top quark width



#### **Spin Correlation**

 Top quark decay before hadronization – Spin information of top quark passed to decay products

**SM prediction** 
$$\kappa = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}} \approx 0.78$$

• κ is related with angles of decay products



#### **Spin Correlation**



#### **Spin Correlation**



### W Helicity

- The SM top decays via EW interaction
  ♦ Top decays as a bare quark ⇒ spin information transferred to final state particles



Measuring the fraction of longitudinally polarized W 8.0 ≈ 00 00 0.6 bosons ЧP right handed Reconstructed cosθ\* sum (SM) θ\* 0.4 b 0.2 \//+ 0 0.5 -0.5 0 -1  $\cos \theta$ La Thuile 2011, Hyunsu Lee, The University of Chicago

#### W Helicity



#### Flavor Changing Neutral Current (FCNC)

- Top FCNC is extremely small in SM ~ O(10<sup>-14</sup>)
- Beyond SM : up to O(10<sup>-4</sup>)
- Any signal = new physics



Br(t→Zq)<3.3% @ 95% CL





- Two lepton channel
  - Hadronic decay W

Br(t→Zq)<3.7% @ 95% CL

PRL 101 (2008) 192002

#### Fourth generation top-like quark search

- Why it was only three generation?
  Fourth generation top-like quark
- 100% t' $\rightarrow$ Wb but, more massive



 Two variables (reconstructed t' mass, scalar sum of the transverse energy in the event (H<sub>T</sub>))



#### $m_{t'}$ > 296 GeV @ 95% CL $m_{t'}$ > 335 GeV @ 95% CL

#### b' and exotic t'



- 100% b'→Wt, so four W and two b final state
  - Very energetic and large jet multiplicities
  - ♦ We use  $H_T$  to extract signal



# 100% t'→tX where X is invisible (dark matter candidate)

#### Use transverse W mass



#### m<sub>t'</sub> < 360 GeV@ 95% CL for m<sub>X</sub> < 80 GeV (exclusion)

#### La Thuile 2011,

arXiv:1101.5728

Hyunsu Lee, The University of Chicago

#### Boosted Top search



- Search for massive top-jets in high  $p_T$  inclusive jet sample ( $p_T > 400 \text{ GeV}$ , 130GeV<m<sub>jet</sub><210GeV)
  - $\clubsuit$  Interesting to test pertubative QCD at high  $\mathsf{P}_{\mathsf{T}}$  region
  - Have MC tune and transfer to LHC
  - Resonance productions enhance the boosted tops

Search Window



#### Conclusion

- Top quarks are well being studied at CDF and D0
  We are performing rigorous study for top quark
- Top physics is an era of the precision measurements
  Order of 1,000 top events are obtained
- Many measurements will be complement for LHC results
- Tevatron's legacy is still ongoing
  - We will have twice of data soon and may have the most interesting results

#### http://www-cdf.fnal.gov/physics/new/top/top.html

http://www-d0.fnal.gov/Run2Physics/WWW/results/top.htm

La Thuile 2011, Hyunsu Lee, The University of Chicago

#### Single top observation





#### PRL 103 (2009) 092002

PRL 103 (2009) 092001

### **First Observation of Single Top**

La Thuile 2011, Hyunsu Lee, The University of Chicago



#### **Tevatron combination**



