

Electroweak and Top physics at ATLAS

RIKARD SANDSTRÖM, NIKHEF

on behalf of

THE ATLAS COLLABORATION

INTRODUCTION LHC & ATLAS

ELECTROWEAK RESULTS

W/Z observation & cross section W asymmetry W+jets **TOP CROSS SECTION**

Single lepton channel Di-lepton channel Combining all 5 subchannels

SUMMARY

R. Sandström

LaThuile workshop

The ATLAS detector

R. Sandström

2

LHC collision data 2010

LHC collision data 2010

LHC collision data 2010

LHC collision data 2010

6

LaThuile workshop

R. Sandström

LaThuile workshop

• With ~300 nb⁻¹ we observed the first 1000 $W \rightarrow e_V$ and $W \rightarrow \mu_V$.

• A clear signal over very small background in both electron and muon channel!

```
R. Sandström
```


 $\sigma_W^{\text{tot}} \cdot \text{BR}(W \rightarrow \ell v) = 9.96 \pm 0.23(\text{stat}) \pm 0.50(\text{syst}) \pm 1.10(\text{lumi}) \text{ nb}.$

 $\sigma^{\text{tot}}_{Z/\gamma^*} \cdot \text{BR}(Z/\gamma^* \to \ell\ell) = 0.82 \pm 0.06(\text{stat}) \pm 0.05(\text{syst}) \pm 0.09(\text{lumi}) \text{ nb}$

• LHC & ATLAS continue the tradition of electroweak boson measurements and extend the field to new energies.

- Important tests of the Standard Model!
- R. Sandström

LaThuile workshop

R. Sandström

LaThuile workshop

Muon charge asymmetry from W^{\pm}

- In proton-proton collisions the production rate of W⁺ is significantly larger than W⁻.
 - The proton contains two *u* and one *d* valence quarks.
 - The *W* asymmetry depends on the momentum fraction *x* of the partons, which we observe as a dependence on *η*.

$$x_{1,2} = \frac{m_W}{\sqrt{s}} \cdot e^{\pm y}, y \simeq \eta$$

• What we measure:

 $A_{\mu} = \frac{d\sigma_{\mathrm{W}\mu^{+}}/d\eta_{\mu} - d\sigma_{\mathrm{W}\mu^{-}}/d\eta_{\mu}}{d\sigma_{\mathrm{W}\mu^{+}}/d\eta_{\mu} + d\sigma_{\mathrm{W}\mu^{-}}/d\eta_{\mu}}$

- This is the second analysis of this asymmetry from ATLAS.
 - The first analysis used 310 nb⁻¹ and 2 η -bins.

Charge asymmetry from W^{\pm} – uncertainties

Systematics:

• Trigger efficiency (2-7%)

- Geometrical acceptance η dependent.
- Muon reconstruction efficiency (1-7%)
 - Geometrical acceptance η dependent.
- Muon momentum scale and resolution (1-2%)
- Luminosity (1%)

Main backgrounds:

- $Z \rightarrow \mu \mu$, with one μ missed. (3%)
- $W \rightarrow \tau \nu$, with $\tau \rightarrow \mu$. (2%)
- $Z \rightarrow \tau \tau$, with one $\tau \rightarrow \mu$. (1%)
- $t\bar{t} \rightarrow b\bar{b}q\bar{q}\nu\mu$. (1%)
- Multijet events with $b/c \rightarrow \mu$. (<1%)

Total: 7% background

• Implies systematic uncertainty of 1-2%.

• Statistical uncertainty:

- Statistical uncertainty is similar to systematic uncertainty per η bin. Typical values for both sources:
 - ~4% in endcaps
 - ~6% in barrel

Charge asymmetry from W^{\pm} – conclusions

• *W* asymmetry increases with $|\eta|$.

- Relates to parton distribution functions of valence quarks.
- Parton distribution functions agree the data.
 - We expect that these results will further constrain next generation PDF uncertainties.
 - Especially for low *x* valence quarks.

 $W \rightarrow e_{\nu} + jets$

$W \rightarrow \mu \nu + jets$

- With 1.3 pb⁻¹, we measured cross section also for *W/Z+jets*.
 - Important test of QCD
 - Input to many physics analysis
 - See talk by E. Meoni Tuesday!
- Here: W → lv+jets cross section as function of pt of two leading jets.

Pythia: Leading-order generator

Alpgen, Sherpa: Match N+1 ME to a LL parton shower (rescaled to NNLO inclusive XS)

MCFM: NLO prediction at parton level for Njet≤2, LO for Njet=3

R. Sandström

LaThuile workshop

W+jets - jet multiplicity 17 $W \rightarrow ev+\text{jets}$ $W \rightarrow \mu v+\text{jets}$

- Also the observed jet multiplicity agrees with simulation.
 - The theoretical uncertainty is only shown for MCFM.
 - Pythia does not reproduce the data at high jet multiplicity.
 - 2 → 2 at matrix element level + additional jets from parton shower is insufficient.
 - The uncertainties between bins are correlated.

LaThuile workshop

LaThuile workshop

B-tagging

- Identification of jets originating from *b*-quarks very important in top physics.
- General concept: Exploit relatively long lifetime of *B*-hadrons resulting in flight times of *O*(few) mm.
 - Identifiable secondary decay vertex.

- Multiple techniques possible
 - here comparatively simple and robust method exploited: selection based on decay length significance *L* / *σ*(*L*)
 - Working point gives 50% efficiency for identifying *b* in *tt*, at mistag rate < 1%.

LaThuile workshop

$e + \mu + 2$ *b*-tagged jets

 $pT(\mu) = 5 | GeV; p_T(e) = 66 GeV; pT (b-tag jets) = |74, 45 GeV; E_T^{miss} = |13 GeV | Secondary vertices vertex mass = ~ 2 GeV, ~ 4 GeV; Purity: > 96\%$

Backgrounds – single lepton channel

Multi-jet events.

- One lepton from a jet instead of the *W*.
- Reduced by:
 - isolation criteria on the lepton
 - B-tagging at least one of the jets

• *W*+jets.

- Reduced by:
 - B-tagging at least one of the jets
- Irreducible:
 - $W+b\overline{b}+$ jets.

Z+jets

- Where one lepton is not found \rightarrow fake missing E_{T}
- Irreducible:

• Single top + jets.

0

Estimating multi-jet background – single lepton channel

µ+jets contrib. from heavy flavour decays

23

• Use Matrix method: Define a loose selection in addition to the one used in the main event selection:

$$N^{\text{loose}} = N^{\text{loose}}_{\text{real}} + N^{\text{loose}}_{\text{fake}},$$
$$N^{\text{std}} = rN^{\text{loose}}_{\text{real}} + fN^{\text{loose}}_{\text{fake}}$$

- r measured in Z $\rightarrow \mu\mu$ events
- *f* measured in 2 separate QCD enriched control regions

e + jets contribution from heavy flavour, $\gamma \rightarrow \textit{ee}$, π^{t}

- Use E_T^{miss} template fitting method where QCD templates are obtained from 2 separate control regions.
 - Jets with high EM fraction.
 - Events with bad track quality.

Estimating *W*+jet background – single lepton channel

24

Number of *W*+4jets was extrapolated from low-jet multiplicity control sample using Berends-Giele scaling

$$\frac{W + (n+1) \text{ jets}}{W + n \text{ jets}} \sim \text{const}$$

$$f_{\text{tagged}}^{\geq 4-\text{jet}} = f_{\text{tagged}}^{2-\text{jet}} \cdot f_{2 \rightarrow \geq 4}^{\text{corr}}$$
Tag fraction in Accounts for different flavor composition for 2-jet and 4-jet events. Estimated with ALPGEN.

Jet multiplicities – single lepton channel

R. Sandström

25

2

1

Number of jets

≥4

3

LaThuile workshop

Cross section determination – single lepton channel

Number of events passing all cuts:

26

	e+jets	$\mu + \mathrm{jets}$	combined
Observed	17	20	37
Total est. bkg	7.5 ± 3.1	4.7 ± 1.7	12.2 ± 3.9
$t\overline{t}$	$9.5\pm4.1\pm3.1$	$15.3 \pm 4.4 \pm 1.7$	$24.8 \pm 6.1 \pm 3.9$

$$\sigma_{t\bar{t}} = \frac{N_{obs} - N_{bkg}}{\int \mathcal{L}dt \cdot \boldsymbol{\epsilon}_{t\bar{t}} \cdot Br(t\bar{t} \to \ell + jets)} \qquad \boldsymbol{\epsilon}_{t\bar{t}} \cdot Br(t\bar{t} \to \ell + jets) = \begin{cases} 3.1 \pm 0.7\% & (e + jets) \\ 3.2 \pm 0.7\% & (\mu + jets) \end{cases}$$

Cross section after subtracting estimated background:

	e+jets	$\mu + \mathrm{jets}$	e/μ +jets combined
Counting σ [pb]	$105 \pm 46 \ ^{+45}_{-40}$	$168 \pm 49 {}^{+46}_{-38}$	$142 \pm 34 {}^{+50}_{-31}$

The result is confirmed by two fit based methods!

R. Sandström

Backgrounds – di-lepton channel

Multi-jet events.

27

- Both leptons from a jet.
- Reduced by:
 - isolation criteria on the lepton
 - B-tagging at least one of the jets

• *W*+jets.

One lepton from a jet.

Di-boson events.

- E.g., WW
- Reduced by
 - requiring at least 2 jets

а

Z+jets / Drell-Yan+jets

- Reduce by
 - $E_{T}miss > 40 \text{ GeV} (ee), 30 \text{ GeV} (\mu\mu)$
 - Z mass veto
 - Scalar sum of $E_{T} > 150$ GeV for $e\mu$ channel
- Irreducible:
 - $Z+\tau\tau$ semileptonic.

- Single top + jets.
 - Irreducible

Backgrounds – di-lepton channel

• Multi-jet events.

28

- Both leptons from a jet.
- Reduced by:
 - isolation criteria on the lepton
 - B-tagging at least one of the jets

W+jets.

One lepton from a jet.

Di-boson events.

- E.g., WW
- Reduced by
 - requiring at least 2 jets

ā

• Z+jets / Drell-Yan+jets

- Reduce by
 - E_{T} miss > 40 GeV (*ee*), 30 GeV ($\mu\mu$)
 - Z mass veto
 - Scalar sum of $E_{T} > 150$ GeV for $e\mu$ channel
- Irreducible:
 - $Z+\tau\overline{\tau}$ semileptonic.

- Single top + jets.
 - Irreducible

R. Sandström

LaThuile workshop

Missing energy & HT – di-lepton channel

2011-03-03

- The large *Z*/DY+jets background can be reduced by requiring missing transverse energy (neutrinos).
- Since *e*µ channel does not contain as many *Z*, a scalar sum of the transverse energy of all jets and leptons was used instead.

Estimating Z/Drell-Yan background – di-lepton channel

30

Process	ee	μμ	eμ
Z+jets (DD)	0.25 ± 0.18	0.67 ± 0.38	-
$Z(\rightarrow \tau \tau)$ +jets (MC)	0.07 ± 0.04	0.14 ± 0.07	0.13 ± 0.06
Non-Z leptons (DD)	0.16 ± 0.18	-0.08 ± 0.07	0.47 ± 0.28
single top (MC)	0.08 ± 0.02	0.07 ± 0.03	0.22 ± 0.04
dibosons (MC)	0.04 ± 0.02	0.07 ± 0.03	0.15 ± 0.05
Total predicted (non $t\bar{t}$)	0.60 ± 0.27	0.88 ± 0.40	0.97 ± 0.30
$t\bar{t}$	1.19 ± 0.19	1.87 ± 0.26	3.85 ± 0.51
Total predicted	1.79 ± 0.38	2.75 ± 0.55	4.82 ± 0.65
Observed	2	3	4

- Define control region in Z-window and below the E^{miss}-cut.
 - Control region = Z candidates
- Determine the ratio of events in control region and signal region from simulation.
- Estimate *Z*/DY contamination by counting number of events in control region, and multiply by the above ratio.

$$N_{signal,data} = N_{control,data} \times \frac{N_{signal,MC}}{N_{control,MC}}$$

R. Sandström

Jet multiplicities – di-lepton channel

• Di-leptons left after selection:

• 2 *ee* (2 pass *b*-tagging)

31

- ^ο 3 μμ (1 pass *b*-tagging)
- $4 e\mu$ (2 pass *b*-tagging)

(Uncertainty on *b*-tagging efficiency implies that a better cross section estimate is obtained with untagged jets.)

Cross section determination – di-lepton channel

Cross section after subtracting estimated background:

$$\sigma_{\mathrm{t} \overline{\mathrm{t}}} = rac{\mathrm{N}_{\mathrm{obs}} - \mathrm{N}_{\mathrm{bkg}}}{\int \mathcal{L} \mathrm{d} \mathrm{t} \cdot \mathbf{\varepsilon}_{\mathrm{t} \overline{\mathrm{t}}} \cdot \mathrm{Br}(\mathrm{t} \overline{\mathrm{t}}
ightarrow \ell \ell)}$$

From MC:
$$\boldsymbol{\varepsilon}_{t\bar{t}} \cdot \operatorname{Br}(t\bar{t} \to \ell\ell) = \begin{cases} 0.24\% & (ee) \\ 0.38\% & (\mu\mu) \\ 0.81\% & (e\mu) \end{cases}$$

Channel	$\sigma_{\rm t\bar{t}}~[\rm pb]$
ee	$193 \ ^{+243}_{-152} \ ^{+84}_{-48}$
μμ	$185 \ ^{+184}_{-124} \ ^{+56}_{-47}$
eμ	$129 \ ^{+100}_{-72} \ ^{+32}_{-18}$
Combined	$151 {}^{+78}_{-62} {}^{+37}_{-24}$

R. Sandström

Combining all channels

	Cross-section [pb]	Signal significance $[\sigma]$
Single lepton channels	$142 \pm 34 {}^{+50}_{-31}$	4.0
Dilepton channels	$151 \ ^{+78}_{-62} \ ^{+37}_{-24}$	2.8
All channels	${\bf 145 \pm 31 ^{+42}_{-27}}$	4.8

- Combining all single lepton and di-lepton channels in a joint likelihood fit.
 - Accounts for all systematics and correlations.
- The results agrees with theoretical prediction.
 - Agreement between ATLAS & CMS results.

R. Sandström

Summary

35

• Many Standard Model measurements were made.

• W & Z cross section

• The measurements agree with theory.

 $\begin{aligned} \sigma_W^{\text{tot}} \cdot \text{BR}(W \to \ell \nu) &= 9.96 \pm 0.23(\text{stat}) \pm 0.50(\text{syst}) \pm 1.10(\text{lumi}) \text{ nb} \\ \sigma_{Z/\gamma^*}^{\text{tot}} \cdot \text{BR}(Z/\gamma^* \to \ell \ell) &= 0.82 \pm 0.06(\text{stat}) \pm 0.05(\text{syst}) \pm 0.09(\text{lumi}) \text{ nb} \end{aligned}$

- $W \rightarrow \mu \nu$ asymmetry
 - New analysis using 31 pb⁻¹.
 - Will provide useful information for low *x*.

W/Z + jets cross section

• Measured cross section as function of jet multiplicity agrees with NLO simulation.

- ATLAS has measured the top pair production cross-section at the LHC in the first 2.9 pb-1 of data.
- The cross-section is measured to be

$$\sigma_{f tar t} = 145 \pm 31^{+42}_{-27} ~{
m pb}$$

- Agreement was found:
 - between the 5 subchannels $(e^{t}, \mu^{t}, e^{t}e^{-}, \mu^{t}\mu^{-}, e^{t}\mu^{-})$
 - in kinematic properties of selected events with SM tt production
 - with (NLO/NNLO) QCD predictions $\sigma_{t\bar{t}} = 164^{+11.4}_{-15.7} \text{ pb}$
 - with CMS
 - $\sigma_{t\bar{t}}=194\pm72~(\mathrm{stat.})\pm24~(\mathrm{syst.})\pm21~(\mathrm{lumi.})~\mathrm{pb}$

R. Sandström

LaThuile workshop

Backup slides

36

www.atlas.ch

R. Sandström

LaThuile workshop

2011-03-03

LaThuile workshop

R. Sandström

Motivation to study top quarks

38

- Precision EW+Higgs physics very sensitive to top mass.
- Top appears in many extensions to the Standard Model:
 - Heavy resonances $pp \rightarrow Z' \rightarrow t\bar{t}$

• FCNC (highly suppressed in SM)

- Top as background:
 - Di-boson: WW,WZ,ZZ
 - Higgs: $H \rightarrow ZZ$, ...
 - Susy: stops
- o ...
- To do list for 2011:
 - Top mass
 - Single top production cross-section
 - Top properties
 - Wtb vertex structure
 - top quark charge
 - spin correlations
 - FCNC
 - Heavy resonances

R. Sandström

Ο

Event selection

Cosmics,pile-up rejection: \geq 5 tracks from primary vertex **Trigger:** Single lepton trigger, pT>10 GeV (fully efficient at 20 GeV) **Leptons:** electron or muon, pT>20 GeV, isolated (to suppress leptons from hadrons decaying in-flight and semi-leptonic production in heavy flavor jets), $|\eta|$ <2.5 **Jets:** anti-kt, R=0.4, $|\eta|$ <2.5

Single lepton channel

Exactly 1 lepton (e or µ) ≥4 jets with pT>25 GeV ≥1 with b-tag (50% efficiency working point) ETmiss >20 GeV (reject QCD BG) ETmiss + mT(W) > 60 GeV ("triangular cut")

Dilepton channel

Exactly 2 leptons(ee, µµ, eµ) with opposite charge ≥2 jets with pT>20 GeV, no b-tag ee: |Mee -MZ| > 5 GeV, ETmiss >40 GeV µµ: |Mµµ -MZ| > 10 GeV, ETmiss>30 GeV eµ: HT>150 GeV (HT is scalar sum of pT of leptons and selected jets)

⁴⁰ Cross section determination

- A binned likelihood fit was used to extract the cross-section.
 - Expected number of events:

$$N^{\mathrm{exp}}(\sigma_{\mathrm{t}\bar{\mathrm{t}}},\alpha_{j}) = L \cdot \varepsilon_{\mathrm{t}\bar{\mathrm{t}}}(\alpha_{j}) \cdot \sigma_{\mathrm{t}\bar{\mathrm{t}}} + \sum_{\mathrm{bkg}} L \cdot \varepsilon_{\mathrm{bkg}}(\alpha_{j}) \cdot \sigma_{\mathrm{bkg}}(\alpha_{j}) + N_{\mathrm{DD}}(\alpha_{j})$$

- L = luminosity, ε = efficiency * acceptance , α = variation of acceptance and background due to systematic uncertainties.
- For each channel, define likelihood:

$$\mathcal{L}(\sigma_{t\bar{t}},L,\alpha_{j}) = \operatorname{Poisson}\left(N^{\operatorname{obs}} \,|\, N^{\exp}(\sigma_{t\bar{t}},\alpha_{j})\right) \times \operatorname{Gauss}(L_{0}|L,\delta_{L}) \times \prod_{j \in \operatorname{syst}} \Gamma_{j}(\alpha_{j})$$

Counting experiment \rightarrow Use Poisson to model N^{obs} given N^{exp} (contains cross-section as fit parameter) Luminosity uncertainty is a nuisance parameter, modelled by a Gaussian. $L_0=2.9 \text{ pb}^{-1}, \delta_L=11\%$ Systematic uncertainties (JES, lepton efficiencies, uncertainties on datadriven measurements, etc) are modelled by Gamma functions (→ Gaussian at limit of small uncertainty)

R. Sandström

Cross section uncertainties – single lepton channel

41

Uncertainty	Single electron	Single muon
Statistical	43%	29%
Jet energy scale	13%	11%
B-tagging efficiency	-10% / +15%	-10% / +14%
Multi-jet background	30%	2%
W+jet background	11%	11%
LaThuile workshop		

R. Sandström