QCD at the Tevatron

G. Hesketh

Gavin Hesketh, University College London On behalf of the CDF and D0 Collaborations 25th Recontres de Physique de la Vallee D'Aosta

Aims of the QCD programme at the Tevatron:

- understand the fundamental physics of hadron collisions
- precision tests of QCD, uncovering new physics

Today will focus on the latest results in "hard" QCD

QCD at the Tevatron

G. Hesketh 2

UC

Gavin Hesketh, University College London On behalf of the CDF and D0 Collaborations 25th Recontres de Physique de la Vallee D'Aosta

Aims of the QCD programme at the Tevatron:

- understand the fundamental physics of hadron collisions
- precision tests of QCD, uncovering new physics

Today will focus on the latest results in "hard" QCD

The Tevatron

Tevatron performing very well:

- 10.3 fb⁻¹ delivered per experiment
- 50 pb⁻¹ per week
- experiment efficiency ~90%
- peak: 3.5 x 10³² cm⁻²s⁻¹

Results today use 0.7 - 6.2 fb⁻¹

Collider Run II Integrated Luminosity

Two general purpose detectors: CDF and D0

- central tracking in a solenoid
- electromagnetic and hadronic calorimeters
- muon tracking (D0: with toroidal magnets)

Competitive advantages

- CDF: better track momentum resolution & displaced track trigger at Level 1

– D0: finer calorimeter segmentation, and muon coverage to $|\eta| < 2.0$

Jets

- searches, precision measurements

- 3 jets, jet substructure

Jet Production

6

$$\sigma_{\text{pert}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n\right) \otimes f_1(\alpha_s) \otimes f_2(\alpha_s)$$

Fundamental process at a hadron collider!

New Physics?

 $1/\sigma_{dijet} d\sigma/d\chi_{dijet}$

0.1

antiproton

$$\sigma_{\text{pert}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n\right) \otimes f_1(\alpha_s) \otimes f_2(\alpha_s)$$

ipt

Fundamental process at a hadron collider!

Any signs of new interactions?

- dijet angular distributions
- dijet mass resonances

No discovery, limits set

- limits depend on model, in 1-3 TeV range
- hard to compete with LHC!

UCL Precision Measurements 8

$$\sigma_{\text{pert}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n\right) \otimes f_1(\alpha_s) \otimes f_2(\alpha_s)$$

Precision test of QCD!

Benchmark: measurements of jet cross sections

- driven by precise jet energy scale:

1-2 % (D0)

- into forward region (| η | <2.4)
- also testing different jet algorithms
 kT instead of cone: PRD 75, 092006 (2007)
 and jet shapes: PRD 71, 112002 (2005)

PDFs and α_s

G. Hesketh

9

UC

Use inclusive jet data:

- constrain PDFs, particularly high-x gluon

$$\sigma_{\text{pert}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n\right) \otimes f_1(\alpha_s) \otimes f_2(\alpha_s)$$

PDFs and α_s

G. Hesketh 10

+0.0041

Use inclusive jet data:

- constrain PDFs, particularly high-x gluon

- and α_{s}

Legacy measurements from the Tevatron!

$$\sigma_{\text{pert}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n\right) \otimes f_1(\alpha_s) \otimes f_2(\alpha_s)$$

$$\alpha_s(M_Z) = 0.1173^{+0.0041}_{-0.0049}$$
Phys. Rev. D 80, 111107 (2009)
from inclusive jet cross section
in hadron-induced processes
$$\square H1$$

$$\triangle ZEUS$$

Dijet Mass

Further information in the di-jet mass distribution

- probe masses > 1.2 TeV!

UC

- still shows some tension with latest PDF fits

Three Jet Production

G. Hesketh

12

Preliminary results on 3 jet mass:

- leading jet pT>150 GeV

- three rapidity ranges, three pT selections
- test NLO in more complex events
- systematics limited: 20-30%, JES dominates

Three Jet Production

G. Hesketh

13

Preliminary results on 3 jet mass:

- leading jet pT>150 GeV
- three rapidity ranges, three pT selections
- test NLO in more complex events
- systematics limited: 20-30%, JES dominates

Also look at R3/2:

I

- cancels many experimental systematics
 - JES still dominates, at 3-5%
- and much of the PDF dependence in theory
- test QCD, and event generators
 - next: extract α_{c}

Jet Structure

Test QCD and parton shower models

- using high energy jets (>400 GeV)
- also benchmark boosted objects

Jet mass

- E-scheme sum of tower 4-vectors)
- ~80% of jets originate from quarks

Angularity and planar flow

- better resolution
- less algorithm dependence

2) Bosons
diphotons
diphotons
photon + jets
2 + jets
heavy flavour

Photons, Z, W

Use the well-understood bosons as a colourless probe of QCD process!

- properties and intercations of the bosons well understood
- kinematics determined by hadronic recoil

Photons, Z, W

G. Hesketh 17

proton q z^0 e^+ antiproton q q q g g g

Use electron and muon decay modes of the Z

- clear experimental signature

Inclusive Z pT: soft and hard recoil

- see J. Sekaric on Electroweak, Thursday

Identified jets:

- complex events: recent NLO W/Z+3jets
- test QCD, understand search background!

W:

- higher cross section
- neutrino adds complication

Photons, Z, W

G. Hesketh 18

proton q z^0 e^+ \overline{q} e^-

Use electron and muon decay modes of the Z

- clear experimental signature

Inclusive Z pT: soft and hard recoil

- see J. Sekaric on Electroweak, Thursday

Identified jets:

- complex events: recent NLO W/Z+3jets
- test QCD, understand search background!

W:

- higher cross section
- neutrino adds complication

Photons:

- higher production cross section
- purity falls at low pT (>~70%)
- isolation cuts reject fragmentation

CL Di-photon Production

G. Hesketh

19

Extensive results from CDF and D0

- photon $p_1 > 15-20 \text{ GeV}$, $|\eta| < 1.0$
- diphoton mass, pT, angles

Theoretical predictions:

DIPHOX: NLO, gg fusion @ LO RESBOS: NLO + soft-gluon resummation PYTHIA: LO + parton shower

Di-photon Production

G. Hesketh

20

Extensive results from CDF and D0

- photon $p_1 > 15-20$ GeV, $|\eta| < 1.0$
- diphoton mass, pT, angles

Theoretical predictions:

DIPHOX: NLO, gg fusion @ LO RESBOS: NLO + soft-gluon resummation PYTHIA: LO + parton shower

Di-photon Production G. Hesketh

Good agreement at high mass

But, no model describes full range:

- low pT, mass regions difficult
 - double differential!
- large contribution from g-g
 - and fragmentation
- g-g more important at the LHC!

21

Photon + jets: MPI

G. Hesketh

Use photon + jet production: - look for multiple interactions

Divide event into two systems:

- photon + jet
- additional jets in event
- check for balance/correlation

Z + Jets

Update to PRL 100, 102001 (2008)

Updated result from CDF:

â

- electron and muon channels, now with 6.2 fb⁻¹
- leading and second jet pT, rapidity
 - compared to LO and NLO pQCD
 - theory describes data well!

Z + Jets

Another, way to access higher jet multiplicities:

LIC

- $\Delta \phi$ (Z, leading jet), measured for the first time
- compared to pQCD and several event generators

See also: PLB 669, 278 (2008) PLB 678, 45 (2009)

1st, 2nd, 3rd jet pT Z pT and rapidity (>= 1 jet) 1st jet rapidity $\Delta y(Z,jet)$ y_{boost}(Z,jet)

W / Z +b

Much progress with Z+light flavour

- also need to understand heavy flavour
- THE low mass Higgs background!

Heavy flavour tagging:

- based on many variables in a NN
- cut on discriminant output

Extract flavour fractions:

- fit templates to jet lifetime, vertex mass
- templates from MC (heavy flavour) data (light flavour).
- both experiments require $p_{\tau} > 20 \text{ GeV}$

Vertex

G. Hesketh

Displaced

Tracks

26

W / Z +b

CDF results, based on 2 fb⁻¹:

W+b jets: 2.74 ± 0.27 ± 0.42 pb NLO: 1.22 ± 0.14 pb

Z+b / Z: 0.332 ± 0.053 ± 0.042 % NLO: 0.23% (0.28%)

Z+b / Z+jet: 2.08 ± 0.33(stat) ± 0.34 (syst) % NLO 1.8% (2.2%)

W / Z +b

10⁴ [GeV CDF results, based on 2 fb⁻¹: **CDF** Data 1.6 **W+b jets:** 2.74 ± 0.27 ± 0.42 pb 1.4 MCFM $Q^2 = m_Z^2 + p_{T,Z}^2$ NLO: 1.22 ± 0.14 pb 1.2 MCFM Q²=<p²_{T iet}> dσ^{jet} (Z+b jet) 0.8 **Z+b / Z:** 0.332 ± 0.053 ± 0.042 % dE_T jet PRL 104, 131801 (2010) 0.6 NLO: 0.23% (0.28%) PRD 79:052008 (2009) **Z+b / Z+jet**: $2.08 \pm 0.33(\text{stat}) \pm 0.34(\text{syst})\%$ NLO 1.8% (2.2%) <mark>д</mark> 20 30 40 50 60 70 80 90 100 E^{b jet} [GeV]

New D0 result, using 4.2 fb⁻¹:

- electron and muon channels - jet $|\eta| < 2.5$ (1.5 for CDF) PRD 83, 031105(R) (2011)

Z+b/Z+jet: 1.93 ± 0.22 (stat) ± 0.15 (syst) % NLO: 1.85 ± 0.22 % ($Q^2 = m_z^2$)

W / Z +b

CDF results, based on 2 fb⁻¹: 10⁴ [GeV CDF Data 1.6 **W+b jets:** 2.74 ± 0.27 ± 0.42 pb 1.4 MCFM $Q^2 = m_Z^2 + p_{T,Z}^2$ NLO: 1.22 ± 0.14 pb 1.2 MCFM Q²=<p²_{T int}> dơ^{jet} (Z+b **Z+b / Z:** 0.332 ± 0.053 ± 0.042 % PRL 104, 131801 (2010) μ 0.6 NLO: 0.23% (0.28%) PRD 79:052008 (2009) **Z+b / Z+jet**: $2.08 \pm 0.33(\text{stat}) \pm 0.34(\text{syst})\%$ NLO 1.8% (2.2%) ע ט 30 40 50 60 70 ደበ 100 20 90 E^{b jet} [GeV]

New D0 result, using 4.2 fb⁻¹:

- electron and muon channels - jet $|\eta| < 2.5$ (1.5 for CDF)

Z+b/Z+jet: 1.93 ± 0.22 (stat) ± 0.15 (syst) % NLO: 1.85 ± 0.22 % ($Q^2 = m_7^2$)

Previous results for photon + heavy flavour:

- theory matches photon + b
- but underestimates photon + c

Phys. Rev. Lett. 102, 192002 (2009), Phys. Rev. D81, 052006 (2010)

PRD 83, 031105(R) (2011)

≜UCL

30

l(e,μ)

Probe strange PDF at high Q^2 (~M_w) **Background** to top, Higgs, SUSY

Strategy:

- select high pT e, μ & soft lepton tagged jet
- for W+c, opposite sign (OS) > same sign (SS)
 multijet, DY, W+bb/cc, OS~SS

- count N(OS) - N(SS)

Good agreement between NLO & data:

 $\sigma_{W+c} \cdot BR = 9.8 \pm 2.8 \text{ (stat)} ^{+1.4}_{-1.6} \text{ (syst) pb}$ NLO pQCD: 11.0 $^{+1.4}_{-3.0} \text{ pb}$

New Preliminary result using soft-e tag: $\sigma \times BR = 33.7 \pm 11.4$ (stat) ± 4.7 (syst) pb NLO: 17.8 ± 1.7 pb

And analysis from D0: - PLB 666, 23 (2008) Also consistent with NLO.

(d,s,b)

Other New Results

31

≜UCL

Conclusion

G. Hesketh 32

Jet results build on the precise JES:

- legacy measurements from the Tevatron
 - improving knowledge of PDFs
 - new measurement of α_{s}
- will remain competitive for years to come

Boson (+ jet) production:

- excellent test of QCD predictions, essential for discoveries!
- extensive study of photons and Z+jets
- interesting new results on Z/W + heavy flavour

Analyses today used up to half of the Tevatron data set

- lots more to come from the Tevatron QCD programme!

http://www-cdf.fnal.gov/physics/new/qcd/QCD.html http://www-d0.fnal.gov/Run2Physics/qcd/ Backup

Defining a Jet

G. Hesketh

34

The D0 Runll seeded, iterative, midpoint cone algorithm.

Run I algorithm:

UC

- draw cone axis around seed (tower)
- split/merge after proto-jet finding
- recompute axis using $E_{_{\!\!\!\!\!\!\!\!\!\!\!}}$ weighted mean
- re-draw cone
- iterate until stable.

Algorithm sensitive to soft radiation:

- infra-red problem.

D0 Run II algorithm:

- add additional seeds between jets
- use 4-vectors instead of $E_{_{\rm T}}$
 - Jets characterised in terms of $p_{_{\rm T}}$ and y.

Improved infra-red stability

Algorithm available in fastjet v2.4

Jets at the Tevatron

36

At the LHC:

- cross section vs $p_{_{\!\!\!\!\!\!\!\!\!}}$ obviously much larger

BUT cross section vs x significantly smaller! e.g. for |y| < 0.4, factor of 200 at x = 0.5

D0 results with 0.7 fb⁻¹ \rightarrow need 140 fb⁻¹ at LHC

Further, problem of steeply falling spectrum:

- at D0, 1% error on jet energy calibration
 - \rightarrow 5 10% error on central σ
 - \rightarrow10 25% error on forward σ

At LHC:

- need excellent jet energy scale
- out to very high $\boldsymbol{p}_{_{\!T}}$

Expect Tevatron to dominate high-x gluon PDF for some years!

Inclusive Photons

G. Hesketh 37

Dominant Systematics:

- photon fraction at low pT (5%)
- photon energy scale at high pT (5-15 %).

New CDF result (2.5 fb⁻¹)

- extends measured photon $\boldsymbol{p}_{_{\!T}}$ range
- agreement within systematics
- shape features at low p_{τ} seen at D0 and CDF

- similar feature seen in Run I, UA2, ...

Photon + Jet

G. Hesketh 38

Investigate further: add a jet

- p_T >15 GeV, | η_{jet} | <0.8, 1.5 < | η_{jet} | < 2.5

Triple differential:

- in jet η , photon η and photon $p_{_{T}}$

Something missing in the theory?

- higher orders, resummation, ..?
- LHC measurements will be very interesting!

Photon + b / c

G. Hesketh 39

b/c $\overline{b}/\overline{c}$

bi

800000

Gluon splitting contribution

- dominates for high photon $p_{_{T}}$
- important as background elsewhere

heavy flavour sea contribution

- dominates at low photon $p_{_{T}}$
- LHC: larger contribution over all $p_{_{T}}$
- charm PDF has significant uncertainties

Photon + b / c

G. Hesketh 40

b-jet cross section well modeled

Deficit in c-jet at high p_r:

- region dominated by gluon splitting

Increased charm sea models:

- move in direction, but not enough

What will the LHC observe?

- more sensitive to heavy flavour sea

Similar analysis to photon + jet:

- p_{Tjet} >15 GeV, $|\eta_{jet}|$ <0.8, $|\eta_{\gamma}|$ <1

Systematics dominated by flavour fractions

- from template fit to jet lifetime probability

