

The XXIV Rencontres de Physique de la Vallée d'Aoste

Marc Buehler University of Virginia

On behalf of the CDF and DØ collaborations

Higgs Introduction

- Generates Fermion masses through interaction with Higgs field
- Breaks electroweak symmetry (W/Z bosons acquire mass) through degrees of freedom of Higgs field
- We don't know exactly what the mass (m_µ) of the Higgs boson is

Hierarchy of Standard Model particle masses

- Direct search at LEP found excess around 115GeV, but not statistically significant
 - $M_{_{\rm H}} \ge 114.4 \text{GeV} @ 95\% \text{ CL}$
- M_w and M_t constraints and indirect constraints on M_H from global EW fits prefer a light Higgs boson:

Low vs High Mass

Higgs production at the Tevatron:

$$\sigma(gg \rightarrow H) = 0.2 - 1 \text{ pb}$$

$$\sigma(q\overline{q} \to VH) = 0.01 - 0.3 \text{ pb}$$

 $\sigma(q\overline{q} \rightarrow q\overline{q}H) = 0.01 - 0.1 \text{ pb}$

H→WW* dominant for M_H >135GeV Tevatron definition of "High Mass"

H→WW* Final States

 l^{-}/q

v / q'

e+jets	m+jets	τ+jets	all hadronic
еτ	mτ	ττ	τ+jets
em	mm	mτ	m+jets
ee	em	еτ	e+jets

- "Leave no stone unturned"
- Hadron collider environment requires that at least one W decays leptonically
- Most sensitive channel is lvlv
- We recently included lvqq
- "All leptonic" final state (lvlv) has a small BR but provides a very clean signal: 2 high p_T leptons and missing E_T
- "Semi leptonic" final state (lvqq) has a large BR but much larger backgrounds which are more difficult to model

\mathbf{CDF}

OS - 0 jet 5.9 - fb^{-1} OS - 1 jet OS - 2+ jets low $M_{\ell\ell}$ Same Sign Trileptons (noZ) Trileptons (Z - 1j) Trileptons (Z - 2+j)

hadronic τ

$\mathbf{D0}$

- "Divide and conquer"
- We create as many sub-channels as is feasible
- Allows us to tune our multivariate discriminants on different mixes of signal and background contributions

\mathbf{CDF}

OS - 0 jet 5.9 - fb⁻ OS - 1 jet OS - 2 + jetslow $M_{\ell\ell}$ Same Sign Trileptons (noZ) Trileptons (Z - 1j)Trileptons (Z - 2+j)hadronic τ $\mathbf{D0}$ $ee + \mu\mu + e\mu - 5.4 \text{ fb}^{-1}$ $e\mu - 6.7 \text{ fb}^-$ Same Sign 5.4 fb⁻¹ $\ell \nu j j$ 5.4 fb⁻¹

Di-lepton + missing E_{τ} signature

$$gg \to H \to WW^* \to \ell^+ \ell^- \nu \bar{\nu}$$

where $\ell^{\pm} = e, \mu$ or τ

in the final states e^+e^- ,

 $e^{\pm}\mu^{\mp}$ and $\mu^{+}\mu^{-}$

Includes contributions from vector boson fusion (VBF) and associated production (VH).

\mathbf{CDF}

OS - 0 jet $5.9 - \text{fb}^{-1}$ OS - 1 jet OS - 2 + jetslow $M_{\ell\ell}$ Same Sign Trileptons (noZ) Trileptons (Z - 1j)Trileptons (Z - 2+j)hadronic τ D0 $ee + \mu\mu + e\mu - 5.4 \text{ fb}^{-1}$ $e\mu$ - 6.7 fb⁻¹ Same Sign 5.4 fb⁻¹ $\ell \nu j j$ 5.4 fb⁻¹

Tau and semi-leptonic channels

Hadronically decaying tau:

 $H \to WW \to \ell \nu \tau \nu$

Semi-leptonic final state:

 $H \to WW \to \ell \nu j j$

Di-lepton + missing E_{T} signature

$$gg \to H \to WW^* \to \ell^+ \ell^- \nu \bar{\nu}$$

Backgrounds

- Dominant background is from Drell-Yan (Z→II) and can be suppressed by cutting on missing E_T
- Dibosons (mainly WW): modeled with PYTHIA
- W/Z+jets, with jet faking a lepton: modeled with data at CDF and ALPGEN at DØ
- Wγ, with γ faking a lepton: BAUR at CDF, PYTHIA at DØ
- ttbar and single-top: modeled with PYTHIA

All cross section normalized to NLO calculations

Event Selection

- 2 high p_{τ} isolated leptons
- Significant amount of missing E_{τ}
- $M_{\parallel} \ge 16 \text{GeV}$ to reduce background from W γ (CDF)

Take advantage of spin correlations:

- Di-lepton pairs from signal more aligned
- Di-lepton pairs from SM backgrounds more back-to-back
- Main discriminant against irreducible background from non-resonant W pair production

Signal Extraction

- Very low S/√B ratios make it impossible to perform cutbased analyses, i.e., no counting experiment
- Requires the use of Multivariate Analysis Techniques (MVA) for signal extraction:
 - Matrix Element calculation (ME), Neural Network (NN) and Boosted Decision Trees (BDT)
 - MVA optimized for each sub-channel and Higgs mass hypothesis
 - Input parameters: event topology, kinematics, ...
 - MVA outputs are used as input to derive limits
- Separate analyses into sub-channels for optimization:
 - CDF: by jet multiplicity (0, 1, 2+)
 - DØ: by dilepton flavor (ee, $\mu\mu$, $e\mu$)

H → WW → IvIv: OS Lepton + 0 jets

5.9 fb⁻¹ data set

Further split into sub-samples with loose and tight lepton ID

Uses likelihood ratios based on ME calculation as additional MVA input

CDF Run II Preliminary	r ∫ L	=5	$.9 { m fb}^{-1}$
$M_H = 165 \ \mathrm{G}$	GeV/c^2		
$t\bar{t}$	2.23	\pm	0.66
DY	227	\pm	62
WW	563	\pm	56
WZ	25.5	\pm	3.8
ZZ	38.3	\pm	5.4
$W{+}\mathrm{jets}$	215	\pm	51
$W\gamma$	155	\pm	22
Total Background	1226	\pm	120
gg ightarrow H	16.9	\pm	3.0
WH	0.410	\pm	0.070
ZH	0.416	\pm	0.059
VBF	0.140	±	0.028
Total Signal	17.8	\pm	3.1
Data		1230)

$\textcircled{W} H \rightarrow WW \rightarrow IvIv: OS Lepton + 1 jet$

5.9 fb⁻¹ data set

Further split into sub-samples with loose and tight lepton ID

Gains ~20% in signal from associated production and VBF

CDF Run II Preliminary	r ∫ L	$\int \mathcal{L} = 5.9 \; \mathrm{fb}^{-1}$				
$M_H = 165 \ \mathrm{G}$	GeV/c^2					
$\overline{t\bar{t}}$	56	\pm	11			
DY	218	\pm	49			
WW	151	\pm	18			
WZ	25.4	\pm	3.5			
ZZ	10.3	\pm	1.5			
$W{+}\mathrm{jets}$	77	\pm	20			
$W\gamma$	25.1	\pm	4.3			
Total Background	563	\pm	69			
$gg \to H$	8.0	\pm	2.4			
WH	1.13	\pm	0.18			
ZH	0.439	\pm	0.066			
VBF	0.74	\pm	0.13			
Total Signal	10.3	\pm	2.5			
Data		533				

W H \rightarrow WW \rightarrow IvIv: OS Lepton + \geq 2 jets

5.9 fb⁻¹ data set

In order to suppress the dominant ttbar background all events with a tight secondary vertex b-tag are rejected

CDF Run II Preliminary	$\int \mathcal{L}$ =	= 5.9) fb^{-1}
$M_H = 165 \mathrm{Ge}$	eV/c^2		
$tar{t}$	169	\pm	24
DY	80	\pm	31
WW	33.6	\pm	6.1
WZ	6.8	\pm	1.3
ZZ	3.10	\pm	0.57
$W + ext{jets}$	26.7	\pm	7.5
$W\gamma$	4.4	\pm	1.2
Total Background	324	\pm	50
$gg \to H$	2.6	\pm	1.8
WH	2.50	\pm	0.35
ZH	1.28	\pm	0.17
VBF	1.37	\pm	0.23
Total Signal	7.8	\pm	2.0
Data		307	

AllSB-2JOS

$H \rightarrow WW \rightarrow IvIv: Low M$

Sum of lepton E_T and ∉_T (GeV)

5.9 fb⁻¹ data set

To increase signal acceptance events that fail the $M_{\parallel} \ge 16 \text{GeV}$ requirement are considered separately

CDF Run II Preliminary	√ ∫ L	=5	$.9 { m fb}^{-1}$
$M_H = 165$ (GeV/c^2		
$t\bar{t}$	0.55	\pm	0.10
DY	4.35	\pm	0.78
WW	13.8	\pm	1.3
WZ	0.371	\pm	0.052
ZZ	0.139	\pm	0.019
W+jets	16.2	\pm	3.0
$W\gamma$	76.8	\pm	7.7
Total Background	112.2	\pm	8.6
gg ightarrow H	1.00	\pm	0.20
Total Signal	1.00	\pm	0.20
Data		112	

AllSB-lowMll

W H \rightarrow WW \rightarrow IvIv: Signal Extraction **D**

Using a NN to extract a signal Separate NNs are trained for each sub-channel and each Higgs mass point

$\textbf{H} \rightarrow \textbf{WW} \rightarrow \mu \textbf{vev}$

6.7 fb⁻¹ data set

Split into sub-channels by jet multiplicity

	Data	Signal	Total Background	$Z \to ee$	$Z \to \mu \mu$	$Z\to\tau\tau$	$t\bar{t}$	W + jets	WW	WZ	ZZ	Multi-jet
0 jets	2662	13.2	2838 ± 224	8.9	172.2	1318	10.8	684.2	447.0	16.5	2.2	177.8
1 jet	1164	7.9	1132 ± 91	4.8	40.6	585.5	107.6	147.6	99.0	6.5	1.6	138.4
$\geq 2~{\rm jets}$	636	4.8	$594{\pm}58$	2.3	14.4	162.8	300.6	38.1	21.9	2.7	1.4	49.2

$\textbf{H} \rightarrow \textbf{WW} \rightarrow \textbf{I} \textbf{v} \textbf{I} \textbf{v}$

• Data
Bkgd. syst.
— Signal
Z+jets
Diboson
W+jets
🔲 Multijet
$t\overline{t}$

5.4 fb⁻¹ data set

Separate sub-channels for ee and $\mu\mu$ final states

	e	+ _e -	μ	$+\mu^{-}$
	Preselection	Final selection	Preselection	Final selection
$Z/\gamma^* \rightarrow e^+e^-$	274886	158 ± 13	-	
$Z/\gamma^* \to \mu^+\mu^-$	-		373582	1247 ± 37
$Z/\gamma^* \rightarrow \tau^+\tau^-$	1441	0.7 ± 0.1	2659	12.0 ± 0.7
$t\bar{t}$	159	47.0 ± 4.4	184	74.6 ± 6.8
$W + \text{jets}/\gamma$	308	122 ± 11	236	91.5 ± 6.5
WW	202	73.9 ± 6.4	272	107 ± 9
WZ	137	11.5 ± 1.0	171	21.5 ± 2.0
ZZ	117	9.3 ± 0.9	147	18.0 ± 1.8
Multijet	1370	1.0 ± 0.1	408	53.8 ± 10.3
Signal $(m_H = 165 \text{ GeV})$	11.2	7.2 ± 0.8	12.7	9.0 ± 1.0
Total background	278620	423 ± 19	377659	1625 ± 41
Data	278277	421	384083	1613

W H \rightarrow WW \rightarrow IvIv: Signal Extraction

Separately trained MVAs for ee, $\mu\mu$ and μe final states:

- Different instrumental backgrounds
- Different lepton momentum resolutions
- Different backgrounds

MVAs:

- H \rightarrow WW \rightarrow IvIv: NN
- H \rightarrow WW \rightarrow $\mu\nu e\nu :$ BDT

Same Sign Lepton and Trilepton Channels from Associated Production

VH—VWW: SS Lepton & Trilepton

5.9fb⁻¹ data set Dominant signal contribution from $VH \rightarrow VWW$

VH→VWW: SS Lepton & Trilepton **I**

	CDF Run II Preliminary	$\int \mathcal{L} = 5.9 \; \mathrm{fb}^{-1}$		CDF Run II Preliminary	ſ	$\int \mathcal{L} = 5.9~{ m fb}^{-1}$		
	$M_H = 165 \text{ G}$	eV/c^2		$M_{H} = 165$				
-	$t\bar{t}$	0.37 \pm	0.11	$t\bar{t}$	0.067	±	0.030	
	WZ	5.35 \pm	0.76	WZ	8.5	\pm	1.4	
	ZZ	1.30 \pm	0.18	ZZ	3.97	\pm	0.57	
	$W+ ext{jets}$	2.92 \pm	0.72	$W+ ext{jets}$	5.1	\pm	1.3	
	$Z\gamma$	3.13 \pm	0.62	$Z\gamma$	4.14	\pm	0.85	
7 neak	Total Background	13.1 \pm	1.5	Total Background	21.8	\pm	2.7	
	WH	0.611 \pm	0.084	WH	0.0280	\pm	0.0046	With Z
removed	ZH	0.159 \pm	0.022	ZH	0.203	\pm	0.032	nook
-	Total Signal	0.77 \pm	0.11	Total Signal	0.231	\pm	0.035	реак
-	Data	11		Data		26		

AllSB-trilepNoZ

AllSB-trilepZ1j

NN to extract signal

VH→VWW: SS Lepton

5.4fb⁻¹ data set

Lepton charge ID important

Backgrounds from charge flip and Multijet

ee, $\mu\mu$, $e\mu$ sub-channels

VH→VWW: SS Lepton

BDT used to extract signal:

Hadronic Tau and Semi-Leptonic Channels

$$H \to WW \to \ell \nu \tau \nu$$

$$H \to WW \to \ell \nu j j$$

5.9fb⁻¹ data set

Requires τ to decay hadronically

Two sub-channels: $e\tau \& \mu \tau$

Main background from jets faking taus Uses BDT

CDF Run II Preliminary	$\int \mathcal{L}$	=5	$.9 \text{ fb}^{-1}$
$m_H = 160~{ m Ge}$	eV/c^2		
dijet, γ + jet	9	\pm	27
$Z \to \tau \tau$	0.8	\pm	0.4
$Z \to \ell \ell$	48.8	\pm	6.4
W+jets	624	\pm	77
$W\gamma$	3.3	\pm	0.4
Diboson (WW, WZ, ZZ)	25.3	\pm	2.7
$t\bar{t}$	15.5	\pm	2.8
Total Background	726	\pm	82
$gg \to H$	1.08	\pm	0.10
WH	0.261	\pm	0.026
ZH	0.167	\pm	0.017
VBF	0.095	\pm	0.011
Total Signal	1.60	\pm	0.11
Data		741	

 $e\tau$ - $\mu\tau$ channels

H→WW→lvjj

5.4fb⁻¹ data set

First look at semi-leptonic final states: l= μ ,e

Split into electron and muon sub-channels

Large branching fraction of hadronic W decays

Factor of ~6 increase in Cross Section x BR

Large backgrounds from W+jets

Use W mass constraint to reconstruct neutrino p_z For m_H >160GeV possible to extract the mass of Higgs

Channel	$gg \rightarrow H$	$qq \rightarrow qqH$	WH	V+jets	Multijet	Top	VV	Total Background	Data
Electron	11.2/46.3/27.8	2.1/6.4/4.2	7.2/0/0	52158	11453	2433	1584	67627	67627
Muon	9.5/34.7/20.4	1.5/4.4/2.9	5.7/0/0	47970	2720	1598	1273	53562	53562

H→WW→lvjj

Systematic Uncertainties

Can affect both shape and overall normalization of final discriminant

Uncertainties listed are relative changes in normalization

Contribution	Shape	w+jets	Z+jets	Top	Diboson	$gg \rightarrow H$
Jet energy scale	Υ	shape only	shape only	± 6.0	$\binom{+3.3}{-3.5}$	$\binom{+3.3}{-2.0}$
Jet identification	Y	shape only	shape only	± 3.3	± 1.3	± 3.5
Jet resolution	Y	shape only	shape only	$\binom{+0.5}{-0.2}$	$\binom{+1.0}{-0.5}$	$\binom{+2.0}{-1.8}$
Association of jets with PV	Υ	shape only	shape only	± 3.8	± 3.8	± 4.8
Luminosty	-	-	± 6.1	± 6.1	± 6.1	± 6.1
Muon trigger	Y	± 0.5	± 0.5	± 0.5	± 0.25	± 0.25
Electron identification	-	± 4.0				
Muon identification	-	± 4.0				
ALPGEN tuning	Y	shape only	shape only	-	-	-
Cross Section	-	± 6.0	± 6.0	± 10.0	± 7.0	± 10.0
PDF	Υ	$\binom{+3.5}{-2.5}$	$\binom{+8.0}{-1.5}$	$\binom{+2.3}{-3.6}$	± 0.25	$\binom{+1.8}{-3.8}$

Combination & Limits

Exclusion Limits

No significant excess of signal-like events is observed MVA outputs used to set exclusion limits at 95% CL Combining low mass and high mass results

DØ almost achieves observed exclusion at $m_{_{\rm H}}$ =165GeV

CDF achieved expected exclusion at m_{H} =165GeV

Tevatron Combination

We exclude at the 95% CL the production of a SM Higgs boson in the mass range of 158 to 175 GeV

Summary & Outlook

- Presented an overview of the Tevatron high mass SM Higgs searches
 - Leave no stone unturned
 - Divide and conquer
- Tevatron limits shown are based on ~6fb⁻¹
- Future prospects:

10fb⁻¹ by the end of Run2 >2.4 σ expected sensitivity across entire mass range 3 σ at 115GeV

Backup

4th Generation Interpretation

- New heavy quark generation hypothesis
 - ggH coupling is 3 times bigger than SM
 - 9 times larger production cross section
- \bullet dilepton+ ${\not\!\!\! E}_T$ channel searches similar to SM
 - Analyses re-optimized for higher m_H ranges

 ${f CDF+D0}\ {f combined\ exclusion:\ 131} \le m_H \le 208\ {f GeV/c^2\ 95\%\ CL}\ {f (for\ infinite\ mass\ scenario)}$

• Large contribution to limits on Higgs searches in 4^{th} generation models

- ▶ Higgs mass currently excluded up to 204 GeV/c²
- For $m_H \ge 200$ GeV, $H \to ZZ$ is as sensitive as $H \to WW$

Search Channel Summary

$m_H{ m = 165~GeV/c^2}$	Exp.	Obs.
CDF		
OS - 0 jet 5.9 - fb^{-1}	1.67	2.39
OS - 1 jet	2.35	2.46
OS - $2+\operatorname{jets}$	3.16	6.14
low $M_{\ell\ell}$	11.2	7.21
Same Sign	4.86	5.92
Trileptons (noZ)	7.37	7.85
Trileptons (Z - 1j)	31.8	36.4
Trileptons (Z - $2+j$)	9.16	10.4
hadronic τ	14.5	23.5
D0		
$ee + \mu\mu + e\mu - 5.4 \text{ fb}^{-1}$	1.36	1.55
$e\mu$ - 6.7 fb ⁻¹	1.93	1.99
Same Sign	7.0	7.2
$\ell \nu j j$	5.5	3.8

H→WW→lvjj Signal Cross Sections

D. de Florian and M. Grazzini, Phys. Lett. B **674**, 2914 (2009); C. Anastasiou, R. Boughezal, and F. Petriello, J. High Energy Phys. **04**, 003 (2009); E.L. Berger and J. Campbell, Phys. Rev. D **70**, 073011 (2004); T. Hahn *et al.*, arXiv:hep-ph/0607308 (2006); M. L. Ciccolini, S. Dittmaier, and M. Krämer, Phys. Rev. D **68**, 0730034 (2003); O. Brein, A. Djouadi, and R. Harlander, Phys. 4 Lett. B **579**, 149 (2004); J. Baglio and A. Djouadi, J. 4 High Energy Phys. **10**, 064 (2010); A. Djouadi, J. Kali-4 nowski, and M. Spira, Comput. Phys. Commun. 108, 564 (1998).

