

Status of SESAME Project

A. NADJI

On Behalf of SESAME Team

A. Nadji, XXV Rencontres de Physique de La Valée d'Aoste, La Thuile (Italy), 3 March 2011

1

What is **SESAME**?

SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East)

is the first international 3rd generation synchrotron light source in the Middle East region,

under construction near Amman (Jordan)

Members:

Bahrain, Cyprus, Egypt, Israel, Iran, Jordan, Pakistan, Palestinian Authority, Turkey. Pending (?): Iraq

Observers: France, Greece, Germany, Italy, Japan, Kuwait, Portugal, Russian Federation, Sweden, UK and USA

Purpose: Foster excellent science and technology in the Middle East (and prevent or reverse the brain drain).

+ Build bridges between diverse societies, and contribute to a culture of peace through international collaboration in science.

<u>Very</u> Brief History of SESAME

*1997: proposal by Prof Herman Winick (SLAC) and Prof G.-A. Voss (DESY):

- rebuild old 0.8 GeV BESSY I in the Middle East, as basis for a new international organization, modeled on CERN, under umbrella of UNESCO.
- * 2002: Shipment of BESSY I to Jordan
- **2002: decision to build a new 2.5 GeV ring** (BESSY I as injector)
- → world **competitive** device
- * 2003: Ground breaking Ceremony
- → foundation of **SESAME**
- *** 2008:** Completion of the building

Gus Voss (DESY) regardant le bateau quittant le port de Hambourg et en direction d'Aqaba (Jordanie) avec BESSY I à bord, le 7 Juin 2002.

SESAME GROUND BREAKING CEREMONY - 6 JANUARY 2003

SESAME building, financed by Jordan

Opening of the SESAME building 3 November 2008

Ultra relativistic electrons can be deviated by the constant magnetic field of bending magnets in which their trajectory is an arc of circle

a direction tangent to their trajectory This is synchrotron radiation

Such conditions are met in <u>electron storage rings</u>

Synchrotron Radiation in the World

SESAME FACILITY

Status of the MICROTRON

SESAME MICROTRON Subsystems Tests in the Hanger

(**April – June 2008**)

MICROTRON Installation in the SESAME Experimental Hall

25/08/2008

at BESSY (1998)

at SESAME (end 2008)

SESAME Temporary Shielding for *MICROTRON* Operation

FIRST SESAME MICROTRON BEAM

JULY, 14th, 2009 (00:35)

Status of the BOOSTER

Tests of Booster Equipment

Booster's Magnets Hydraulic tests

Hydraulic Cell Assembly

Water Magnet Cleaning

Flow Switch Test

Booster Vacuum Tests

Booster's pulsed Injection and Extraction system tests

Successfully tested

Booster's pulsed Injection and Extraction system tests

Injection kicker tests results

Booster RF System

- The Booster RF system is complete and ready to be installed in the Booster tunnel.
- All the subsystems have been tested and connected, including Cavity, LLRF, solid-state transmitter, interlocks and RF control system.

Booster RF system

Booster RF Cavity during commissioning

BPM sets Response initial tests assembly (Down left), and High frequency termination/50 Ω preparation (Down right) at the electric Lab.

Booster New Power Supplies (arrived at SESAME on September 27th 2010)

Dipole Magnet Power Supply

A. NadjiA819adji,aXXVAReNcommesSie4949sique detervalée0diAoste, La Thuile (Italy), 3 March 2011

Update of the Major tasks for the *Booster*

BOOSTER	2009	2010				2011					
		Jan. – Apr.	May-A	Aug.	SeptDec.	Jan. – Apr.	May-Aug	SeptDec			
Shielding		_									
Timing System	Specification										
Control System			Sj	pecif	ication						
Radiation Monitors & PSS				Spe	cification						
Water piping distribution & Cabling											
Installation											
Commissioning								•			

Status of the STORAGE RING

STORAGE RING OPTICS

Radiation from Bending Magnets, Wigglers and Undulators

Magnetic Design Complete

End-chamfer to achieve the same effective magnetic length along the transversal position.

3D Mechanical Engineering Design

Collaboration with CERN

Proposal for the supply of the SESAME Main Ring magnet system by a CERN-EU joint venture

Work packages and sharing of responsibilities for the proposed initiative

SESAME takes full responsibility for the specifications and the acceptance of the equipment. The specifications must be agreed with CERN and its subcontractors, where applicable.

□ Magnet review 6, 7th December 2010 at SESAME

Fitting out of the Service Area (to scale)

18

A Proposal for the Installation of the Solid State Amplifiers of the Storage Ring RF System

Survey & Alignment Network

PHASE 1 BEAMLINES

No.	Beamline	Energy Range	Source Type	Donation
1.	Protein Crystallography	4 – 14 keV	Wiggler (ALS)	Daresbury DL – 14.1 & 14.2
2.	XAFS/XRF	3 – 30 keV	Bending Magnet	Daresbury DL – 4.1 & 4.2
3.	Infra-red Spectro- microscopy	0.01 – 1 eV	Bending Magnet	-
4.	Soft X-ray, Vacuum Ultra Violet (VUV)	0.05 – 2 keV	Elliptically Polarizing Undulator	-
5.	Small and Wide Angle X-ray Scattering (SAXS/WAXS)	8 – 12 keV	Bending Magnet	Daresbury DL – 16.1
6.	Powder Diffraction	3 – 25 keV	Multi-pole Wiggler	SLS
7.	Extreme Ultraviolet (EUV)	10 - 200 eV	Bending Magnet	LURE

Location of PHASE 1 Beamlines

Major tasks for the *Storage Ring*

Storage Ring	2010	2011	2012	2013	2014	2015		
	T1 T2 T3 T4	T1 T2 T3 T4	T1 T2 T3 T4	T1 T2 T3 T4	T1 T2 T3 T4	T1 T2 T3 T4		
Magnets	• • • • • • • • • • • • • • • • • • •							
Vacuum	\$							
System								
Girders								
Alignment								
Power Supplies		•						
Diagnostics		\$						
RF system								
Pulsed Magnets								
Puls. Pow. Suppl.								
Timing System								
Control System		•						
Shielding								
PSS								
Cooling System								
Radiation Monitors								
Cabling								
Front Ends								

Tentative Agenda

Program	2010			2011				2012			2013			2014			2015							
	T 1	T 2	T 3	Т 4	T 1	T 2	T 3	Т 4	T 1	T 2	T 3	T 4	T 1	T 2	T 3	Т 4	T 1	T 2	T 3	Т 4	T 1	T 2	T 3	T 4
End of the shielding			1								<u> </u>	<u> </u>			<u> </u>	<u> </u>			I	<u> </u>		<u> </u>	I	
Installation + Test of the Booster Subsystems						_		•	-															
Commissioning of the Microtron at 22.5 MeV																								
Commissioning of the Booster																								
Storage Ring call for tender + Manufacturing																								
Installation + Tests																								
Commissioning of the Storage Ring																								

Cost of Completing Construction

ltem	Budget Without options	Budget With options
Microtron + Booster + Storage Ring (M€)	15.340	17.940
Infrastructure (M€)	3.160	3.160
Contingency (10%) (M€)	1.850	2.110
Total in M€	20.350	23.210
Total in MUS\$	30.525	34.815

SESAME Technical Staff

	Name	Field of Activity	Nat.	Hir. Date
			Detection	
1	Maner Attal	Acc. Physics.	Palestine	Jan 2004
2	Firas Makahleh	Cooling and Vacuum	Jordan	Jun 2004
3	Seadat Varnasseri	Diagnostics & Puls. Magnets & Power Supplies	Iran	Jul 2004
4	Adel Amro	Vacuum & Service Area	Jordan	Jul 2004
5	Maher Shehab	Mech. Engineering	Jordan	Feb 2005
6	Darweesh Foudeh	RF & Electronics	Jordan	June 2007
7	Arash Kaftoosian	RF	Iran	Oct 2005
8	Hamed Tarawneh	Acc. Physics/ Magnet	Jordan	Mar. 2006
9	Moh'd. Alnajdawi	Mechanical Engineering	Jordan	June 2007
10	Salman Matalgah	Computing and Network	Jordan	Sept. 2007
11	Saed Abu Ghannam	Control System	Palestine	August 2010
12	Adli Hamad	Radiation Safety	Jordan	June 2007
13	Thaer Abu Haniah	Alignment & Survey	Jordan	Nov. 2007
14	Tasadaq Ali Khan	RF & Control	Pakistan	Nov. 2007
15	Saed Budair	Vacuum	Jordan	July 2008
16	Muayed Sbahi	Electrical & Cabling	Jordan	August 2008

SESAME Organizational Structure

- Construction budget not secure
- Need of stable financial support
- Increasing the number of member countries in the Gulf as well as in the Maghreb
- Compensating the differences in the human and financial resources of the member countries
- Solutions to some practical problems involving travel restrictions in the region

Construction Funds (spent)

□ 1.2 M€from EU – Jordan

Electronic, RF, Control and Vacuum **labs** Mechanical workshop Refurbishment of the Microtron

500 kJD from Ministry Of Higher Education- Jordan

Network infrastructure

□ 3.1M US\$ from Jordan Royal Court

Alignment tools and network Radiation shielding wall construction Complement for the network Bridge and cable trays

Training Programme

One of the essential objectives of SESAME

Funded by IAEA, other organisations around the world, and numerous synchrotron laboratories which provide training opportunities : ALBA, ESRF, PF, SLS, SOLEIL,...

Many workshops, users' meetings: + schools supported by JSPS

Travel support from APS-EPS-IoP-DPG, ICTP and Canon Foundation (UK)

Recent Staff trips

□ Firas Makahleh, Maher Shehab and Amor Nadji (6 & 7 /04) to ALBA for the vacuum review meeting. Financed by IAEA.

Hamed Tarawneh (19/09 to 24/09) to CERN to discuss the Storage Ring magnets (cross check our magnetic design with OPERA 3D). Financed by SESAME.

□ Saed Abu Ghannam (4/10 to 26/10) newly hired control system engineer to CLS to be trained in accelerator control systems. Financed by CLS.

□ Maher Attal and Adli Hamad (24/10 to 24/11) to ALBA to participate to the commissioning of the Storage Ring. Financed by IAEA.

Mohammad Najdawi (21/10 to 21/12) and Saed Budair (21/10 to 22/11) to SLS for the dismantlement of the Material Science Beamline and to be trained on the Front Ends design. Financed by PSI.

CONCLUSION

- The Microtron has been successfully commissioned with beam at low energy.
- All the existing Booster subsystems have been tested and new Booster magnets power supplies are being manufactured. More investigation are made for the vacuum chambers.
- ***** The concrete part of the shielding wall is complete.
- * The design of the Storage Ring equipment is finalised and technical specifications are ready for call for tender.

We have come this far, we have to believe we will get there

We will keep the faith but we need help.