Working Technicolor at the LHC

Marco Nardecchia
$\xrightarrow[\text { Paticle P Physics \& ondin ot Mass }]{C P^{3}-\text { Origins }}$

4 March 201I, La Thuille

Outline

- Technicolor
© Walking Dynamics and Minimal Models
(0) Phenomenology at the LHC

Technicolor

QCD lesson:

Chiral Symmetry: $S U(2)_{L} \times S U(2)_{R} \xrightarrow{\left\langle\bar{u}_{L} u_{R}+\bar{d}_{L} u_{R}\right\rangle=\Lambda_{\mathrm{QCD}}^{3}} S U(2)_{V}$
Gauge Symmetry: $S U(2)_{L} \times U(1)_{Y} \xrightarrow[M_{W}=\frac{g F_{\pi}}{2} \sim 29 \mathrm{MeV}]{ } U(1)_{Q}$
New Strong Interactions $\quad S U(N)_{T C} \times S U(3)_{C} \times S U_{L}(2) \times U_{Y}(1)$ at higher scale
[Weinberg, Susskind] $Q_{L}, Q_{R} \quad$ Techniquarks

Global Symmetry: $S U(N)_{L} \times S U(N)_{R} \longrightarrow S U(N)_{V}$

$$
\langle\bar{Q} Q\rangle=\Lambda_{\mathrm{TC}}^{3}=(246 \mathrm{GeV})^{3} \quad M_{W}=\frac{g F_{\pi}^{T C}}{2} \sim 80 \mathrm{GeV}
$$

Extended Technicolor

Fermion Masses: $\quad \bar{L} \cdot H e_{R}$

Gamma - Terms

$$
\frac{1}{\Lambda_{E T C}^{2}}\left(\bar{s} \gamma^{5} d\right)\left(\bar{s} \gamma^{5} d\right)+\frac{1}{\Lambda_{E T C}^{2}}\left(\bar{\mu} \gamma^{5} e\right)\left(\bar{e} \gamma^{5} e\right)+\ldots
$$

$$
\downarrow
$$

$$
\Lambda_{E T C} \geq 10^{3} \Lambda_{T C}
$$

QCD like dynamics: $\quad<\bar{Q} Q>_{E T C} \approx<\bar{Q} Q>_{T C} \sim \Lambda_{T C}^{3}$

$$
\begin{array}{r}
m_{\mathrm{f}} \approx \frac{g_{E T C}^{2}}{\Lambda_{E T C}^{2}}<\bar{Q} Q>_{E T C} \ll m_{\mathrm{Top}} \\
\quad \text { Is it possible to enhance }<\bar{Q} Q>_{E T C} ?
\end{array}
$$

New type of dynamics

[Holdom]

$$
m_{\mathrm{f}} \approx \frac{g_{E T C}^{2}}{\Lambda_{E T C}^{2}}<\bar{Q} Q>_{E T C}=\frac{g_{E T C}^{2}}{\Lambda_{E T C}^{2}}\left(\frac{\Lambda_{E T C}}{\Lambda_{T C}}\right)^{\gamma_{m}\left(\alpha^{*}\right)}<\bar{Q} Q>_{T C}
$$

Need large anomalous dimension

Minimal models of WT

Guidelines for model building:
Walking dynamics

- Minimising the contribution to S

$$
S_{\text {naive }}=\frac{d(r) N_{f}}{12 \pi}
$$

Gauge Group, i.e. SU, SO, SP

Matter Representation
\# of Flavors
> - Minimal WTT $\begin{gathered}\text { Dietrich, } \\ \text { Sannino, Tuominen }\end{gathered}$ $S U(2)_{T C} \square$ U D E

Global Symmetry:

$$
S U(4) \longrightarrow S O(4)
$$

$$
3+6 \text { NGB }
$$

Dietrich, - Next to MWWT Sannino, Tuominen

$$
S U(3)_{T C} \square \underset{\mathbf{D}}{\mathbf{U}}
$$

Global Symmetry:
$S U(2)_{L} \times S U(2)_{R} \longrightarrow S U(2)_{V}$
3 NGB

WT Effective Lagrangian

$\mathcal{L}($ Composites $)+\mathcal{L}($ Mixing with SM$))+\mathcal{L}($ New Leptons $)+\mathcal{L}(\mathrm{SM}-$ Higgs $)$
In the initial investigation we include:
Composite Higgs
Composite Axial - Vector States

Walking/Higher dim. rep. can allow for:

Light Composite Higgs Sannino 08
Hong, Hsu, Sannino, 04
Dietrich, F.S., Tuominen 05
Doff, Natale, Rodrigues da Silva 08
Doff, Natale, 09.

Light Composite Axial Foadi, Frandsen, Ryttov, Sannino 07
Eichten, Lane 07

NMWT Effective Lagrangian

$$
S U(2)_{L} \times S U(2)_{R} \longrightarrow S U(2)_{V}
$$

$$
\begin{align*}
\mathcal{L}_{\text {boson }} & =-\frac{1}{2} \operatorname{Tr}\left[\widetilde{W}_{\mu \nu} \widetilde{W}^{\mu \nu}\right]-\frac{1}{4} \widetilde{B}_{\mu \nu} \widetilde{B}^{\mu \nu}-\frac{1}{2} \operatorname{Tr}\left[F_{\mathrm{L} \mu \nu} F_{\mathrm{L}}^{\mu \nu}+F_{\mathrm{R} \mu \nu} F_{\mathrm{R}}^{\mu \nu}\right] \\
& +m^{2} \operatorname{Tr}\left[C_{\mathrm{L} \mu}^{2}+C_{\mathrm{R} \mu}^{2}\right]+\frac{1}{2} \operatorname{Tr}\left[D_{\mu} M D^{\mu} M^{\dagger}\right]-\tilde{g}^{2} r_{2} \operatorname{Tr}\left[C_{\mathrm{L} \mu} M C_{\mathrm{R}}^{\mu} M^{\dagger}\right] \\
& -\frac{i \tilde{g} r_{3}}{4} \operatorname{Tr}\left[C_{\mathrm{L} \mu}\left(M D^{\mu} M^{\dagger}-D^{\mu} M M^{\dagger}\right)+C_{\mathrm{R} \mu}\left(M^{\dagger} D^{\mu} M-D^{\mu} M^{\dagger} M\right)\right] \\
& +\frac{\tilde{g}^{2} s}{4} \operatorname{Tr}\left[C_{\mathrm{L} \mu}^{2}+C_{\mathrm{R} \mu}^{2}\right] \operatorname{Tr}\left[M M^{\dagger}\right]+\frac{\mu^{2}}{2} \operatorname{Tr}\left[M M^{\dagger}\right]-\frac{\lambda}{4} \operatorname{Tr}\left[M M^{\dagger}\right]^{2} \tag{3.47}
\end{align*}
$$

- Different underlying theories can have the same chiral symmetry breaking - New particles - two triplets of heavy vectors: $R_{1}^{ \pm}, R_{1}^{0}$ and $R_{2}^{ \pm}, R_{2}^{0}$ -Link to the underlying TC theory via Modified Weinberg Sum Rules -Relevant parameters: \tilde{g}, M_{A}, M_{H}

Model Implementation

Energy

Underlying Theory:
(N)MWT
arXiv: hep-ph/0405209
Λ

FeynRules
 arXiv:0806.4194 [hep-ph]

Effective Lagrangian arXiv:0706.1696 [hep-ph]

MadGraph, CalcHep,

Spin one at LHC

- Drell-Yan Production

$p p \rightarrow R_{1,2}^{0} \rightarrow l^{+} l^{-}$

$$
p p \rightarrow R_{1,2}^{ \pm} \rightarrow l^{ \pm} \nu
$$

$100 \mathrm{fb}^{-1} ; 14 \mathrm{TeV}$
$p p \rightarrow R_{1,2}^{ \pm} \rightarrow Z W^{ \pm} \rightarrow 3 l \nu$

[0809.0793, Belyaev, etal.]
[CP3 Report, Antola etal, to appear soon]

Higgs Phenomenology

- Higgs production in association with W/Z modified by composite spinone state

Conclusions

- Dynamical EWSB can naturally occur at the LHC
© Simplest models of Walking Technicolor
© A lot of work to be done: lattice simulations, discrimination among different strongly interacting scenarios, more phenomenological analysis,...

Weinberg Sum Rules (WSR)

- spin 1 vector and axial $\quad V^{a}=\frac{A_{\mathrm{L}}^{a}+A_{\mathrm{R}}^{a}}{\sqrt{2}}, \quad A^{a}=\frac{A_{\mathrm{L}}^{a}-A_{\mathrm{R}}^{a}}{\sqrt{2}}$
- masses and decay constants

$$
\begin{array}{ll}
M_{V}^{2}=\frac{\tilde{g}^{2}}{4}\left[f^{2}+\left(s-r_{2}\right) v^{2}\right] & F_{V}=\frac{\sqrt{2} M_{V}}{\tilde{g}} \\
M_{A}^{2}=\frac{\tilde{g}^{2}}{4}\left[f^{2}+\left(s+r_{2}\right) v^{2}\right] & F_{A}=\frac{\sqrt{2} M_{A}}{\tilde{g}} \chi
\end{array}
$$

- Weinberg Sum Rules

$$
S=4 \pi\left[\frac{F_{V}^{2}}{M_{V}^{2}}-\frac{F_{A}^{2}}{M_{A}^{2}}\right]
$$

zeroth

Walking technicolor (WT) models can allow for a light composite Higgs (a few hundred GeV)
\square Scalar $f_{0}(660)$ in QCD lighter than vector states
\square Large N_{c} scaling argument
Higgs mass further reduced by walking dynamics?
[Hong, Hsu, Sannino 04]
[Dietrich, Sannino, Tuominen 05]
[Sannino 08]
Solving truncated Schwinger-Dyson and Bethe-Salpeter equations
[Doff, Natale 08,09]
\square Light Higgs can help to unitarize $W W$ scattering
[Foadi, MJ, Sannino 08]

Viable NMWT parameter space

CDF direct limit from $p p->e^{+} e^{-}$

$$
\begin{aligned}
& \text { a<0, } \\
& \text { defined by } \\
& \text { the } 2^{\text {nd }} \text { WSR }
\end{aligned}
$$

EW Y and W parameters @95\% CL

Barbieri, Pomarol, Rattazzi,Strumia 04

SM Higgs vs Technicolor

- simple and economical
- GIM mechanism, no FCNC problems, EW precision data are OK for preferably light Higgs boson
- SM is established, perfectly describes data
- fine-tuning and naturalness problem
- there is no example of fundamental scalar
- Scalar potential parameters and yukawa couplings are inputs
- complicated at the effective theory level
- FCNC constraints requires walking, potential tension with EW precision data
- no viable ETC model suggested yet, work in progress
- no fine-tuning, the scale is dynamically generated
- Superconductivity and QCD are examples of dynamical symmetry breaking
- parameters of low-energy effective theory are derived once underlying ETC is constructed

