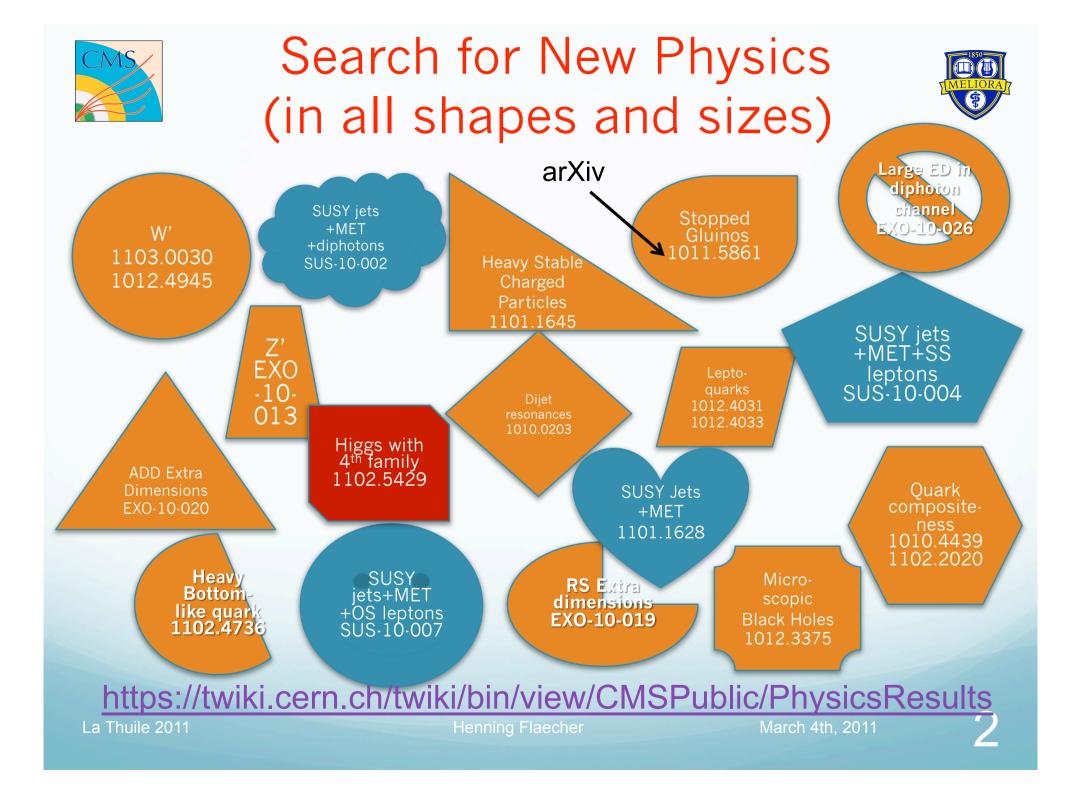


Searches for New Physics at CMS


on behalf of the CMS Collaboration

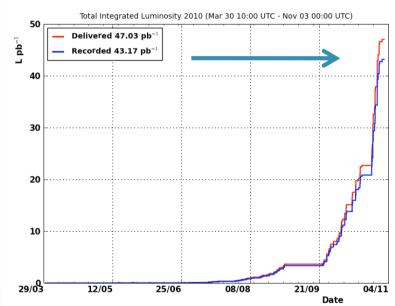
XXV Rencontres de Physique de La Vallee d'Aoste

La Thuile 2011

Henning Flaecher

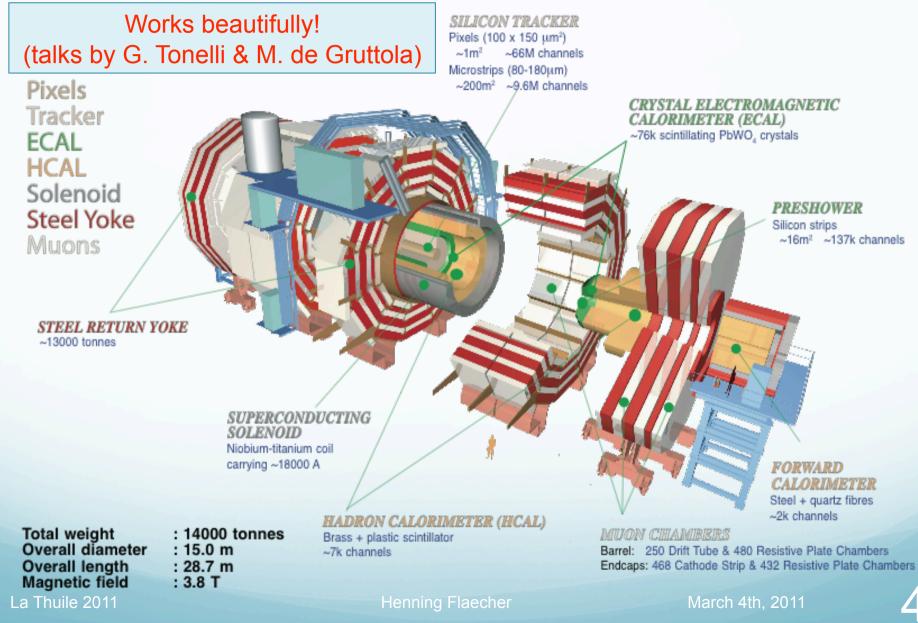
March 4th, 2011

Overview



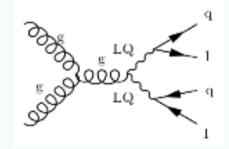
- CMS is looking for signs of New Physics in all possible directions
- All results based on full 2010 dataset: ~35 pb⁻¹
- In this talk:
 - "Exotica"
 - W' and Z' searches
 - Leptoquarks
 - Extra Dimensions
 - Microscopic Black Holes
 - SUSY missing energy searches
 - Jets + missing energy
 - Jets + missing energy + 2 OS leptons
 - Jets + missing energy + 2 photons
 - Higgs

WW production & $H \rightarrow W^+W^-$


La Thuile 2011

Henning Flaecher

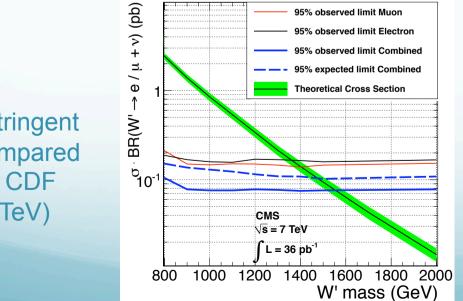
The CMS detector

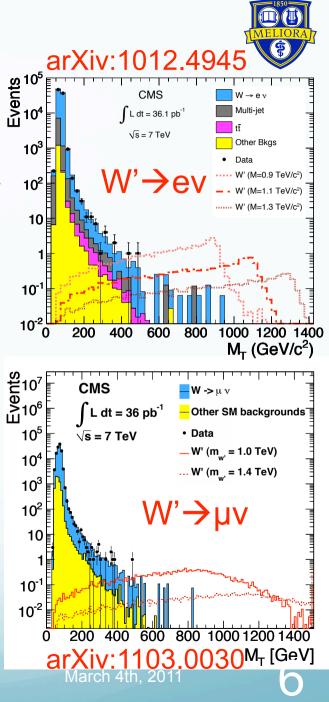


- Excited Vector Bosons
 - W' search for enhancement/peak in transverse mass spectrum
 - Z' search for resonance in dilepton invariant mass spectrum
- Leptoquarks
 - 1st and 2nd generation searches via pair-production from gluon fusion
 - decay to quark and lepton

Extra Dimensions

- Microscopic Black Hole search
 - Decay via Hawking radiation with equal probability to all SM particles
- (additionally, searches for large ED in dimuon events and Randall-Sundrum gravitons in diphoton channel)



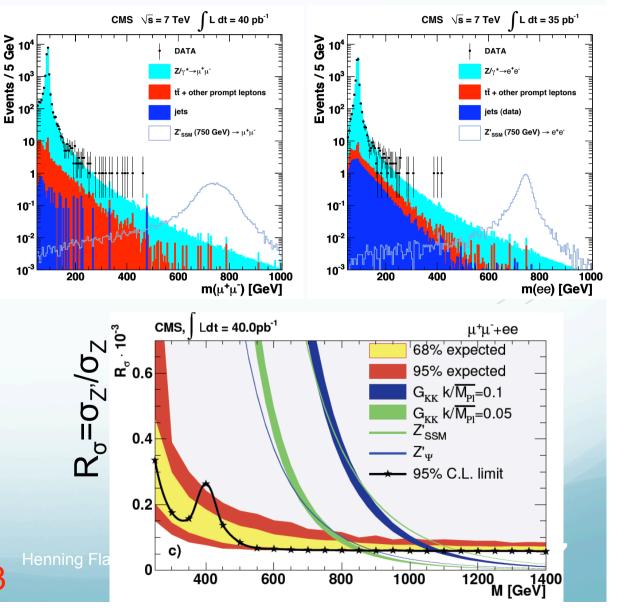

W' searches

- W' a heavy analogue of SM W with same couplings
- identify high p_T lepton (e or μ), $p_T > 30$ GeV
- Search for peak/enhancement in transverse mass spectrum (e/ μ + missing transverse energy)

$$M_{\rm T} = \sqrt{2 \cdot p_{\rm T} \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi_{\mu,\nu})}$$

- Data agree with SM expectation
 - from W' \rightarrow e ν channel exclude W' masses below 1.36 TeV
 - from W' $\rightarrow \mu \nu$ channel exclude W' masses below 1.40 TeV
- Combination of e and μ channel results in 95% CL exclusion of W' masses below 1.58 TeV

more stringent limit compared D0 & CDF (1.1 TeV)

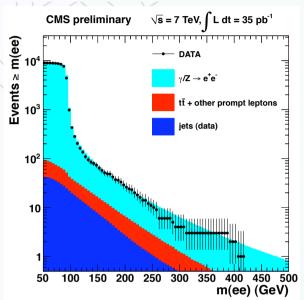


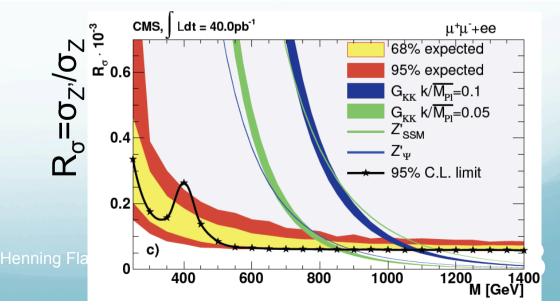
- Search for resonance in di-lepton mass distribution
- Identify 2 muons with $p_T > 20$ GeV or 2 electrons with $p_T > 25$ GeV
- Dilepton invariant mass spectra consistent with SM expectations
- No sign of new resonance
- Z'_{SSM} with Standard-Modellike couplings can be excluded below 1140 GeV
- Superstring-inspired Ζ' ψ excluded below 887 GeV
- RS Kaluza-Klein gravitons below 855–1079 GeV for couplings of 0.05–0.1

EXO-10-013

(all at 95% C.L.)

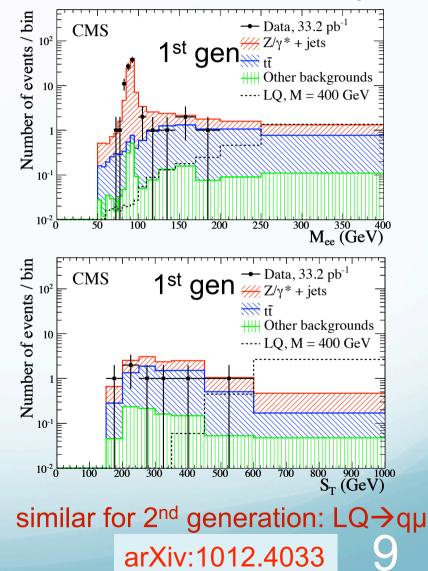
Z' searches


Search for resonance in di-lepton mass distribution


- Identify 2 muons with $p_T > 20$ GeV or 2 electrons with $p_T > 25$ GeV
- Dilepton invariant mass spectra consistent with SM expectations
- No sign of new resonance
- Z'_{SSM} with Standard-Modellike couplings can be excluded below 1140 GeV
- Superstring-inspired Z' excluded below 887 GeV
- RS Kaluza-Klein gravitons below 855–1079 GeV for couplings of 0.05–0.1

EXO-10-013

(all at 95% C.L.)

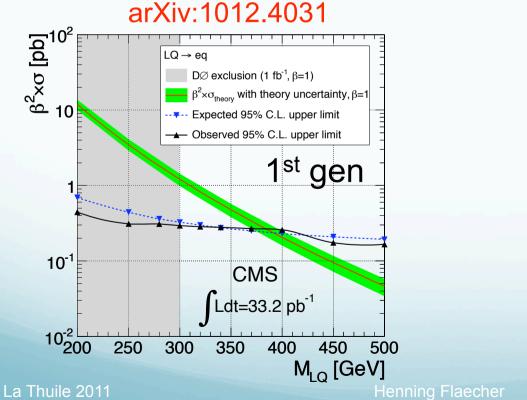


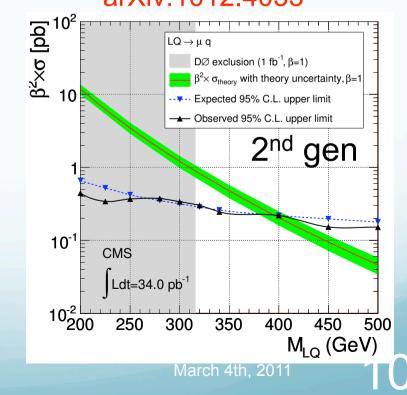
Leptoquarks

- Pair production of leptoquarks
 - search for events with two leptons (e and μ) and two jets
 - lepton p_T > 30 GeV and | η | < 2.5
 (2.4 for μ's)
 - jets with $p_T > 30$ GeV and $|\eta| < 3.0$
- Discriminating variables:
 - dilepton invariant mass
 - require large mass to reject Z's
 - $M_{ee} (M_{\mu \mu}) > 125 (115) \text{ GeV}$
 - scalar sum of transverse energies of leading and subleading leptons and jets
 - $S_T = E_T(I_1) + E_T(I_2) + E_T(j_1) + E_T(j_2)$
 - mass dependent S_T cut (>250 GeV)
- Main backgrounds from Drell-Yann + jets and top pair production
 - Normalise DY background in Z control region

arXiv:1012.4031 1st Generation: LQ→qe

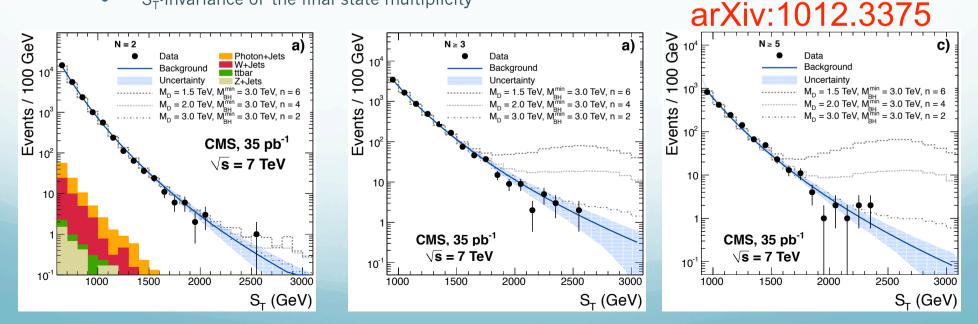
La Thuile 2011


Henning Flaecher


Leptoquarks

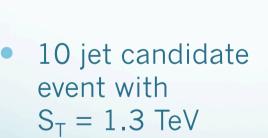
- Set limit on BF * Cross section in absence of excess
 - β is BF for LQ \rightarrow qe
 - (1- β) is BF for LQ \rightarrow q ν_{e}
- $M_{LQ} > 384 \text{ GeV for } \beta = 1 \ (1^{st} \text{ gen})$
- $M_{LO} > 394$ GeV for $\beta = 1$ (2nd gen)

arXiv:1012.4033

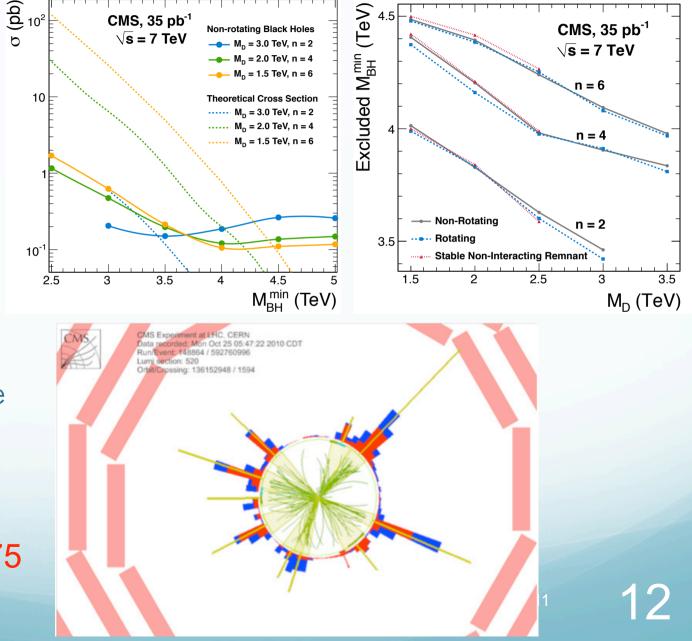


Extra Dimensions: Black Holes

• Creation of microscopic Black Holes possible when the two partons from colliding beams pass each other at a distance smaller than the Schwarzschild radius corresponding to their invariant mass

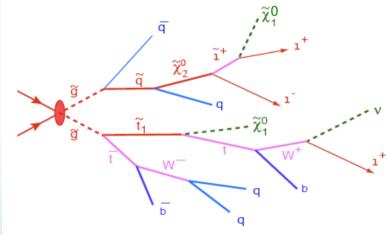

$$r_{\rm S} = \frac{1}{\sqrt{\pi}M_{\rm D}} \left[\frac{M_{\rm BH}}{M_{\rm D}} \frac{8\Gamma(\frac{n+3}{2})}{n+2} \right]^{\frac{1}{n+1}} \qquad \qquad M_{\rm Pl}^2 = 8\pi M_{\rm D}^{n+2} r^n$$

- Black holes instantaneously decay via Hawking evaporation with an emission of large number of energetic objects:
 - dominated (75%) by quark and gluons, with the rest going into leptons, photons, W/Z, h, etc.
- Discriminating variable:
 - $S_T = \Sigma E_T$, where the sum is over all the objects with $E_T > 50$ GeV, including ME_T
- Completely data-driven QCD background determination using a novel technique:
 - S_T -invariance of the final state multiplicity



- In absence of an excess, set limits on the minimum BH mass
- 3.5-4.5 TeV in semi-classical approximation

arXiv:1012.3375



SUSY Searches: Overview

- Supersymmetry an excellent candidate for Dark Matter
- R-parity conserving SUSY gives rise to stable lightest SUSY particle (LSP)
 - missing energy signature
- CMS follows a topology driven approach:
- Search for heavy pair-produced particles that decay to SM particles and LSP
 - direct decay of squarks or gluinos to quarks (jets) + LSP
 - cascade decays via charginos resulting in leptons

- In case of GGM, neutralino decay to photon + gravitino (LSP)
 - diphoton + jets + missing energy signature

La Thuile 2011

lenning Flaecher

March 4th, 2011

13

SUSY searches: jets + missing energy

- pair production of heavy particles whose decay results in high p_{τ} jets
- Main problem: huge QCD multijet background!
- Basic Idea: deploy a simple and robust analysis based on kinematics appropriate for early data
 - Simplicity: use of kinematic information (α_{T} variable)
 - Robustness: protection against mis-measurements of jets in QCD events; signal region is practically QCD free
 - Result: remaining backgrounds dominated by processes with real MET [i.e. EWK+top]
 - Define:

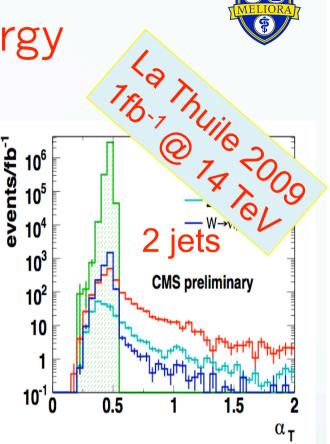
a,

 α_{T} for

dijets:

La Thuile 2011

Jet mis


•
$$H_T = \Sigma p_T(j_i)$$

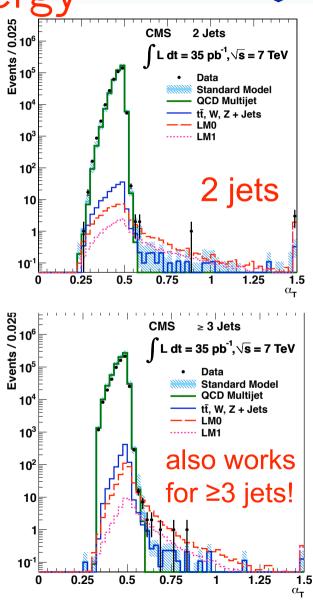
•
$$MH_T = | \cdot \Sigma \overline{p_T}(j_i) |$$

 $\Delta H_T = E_T(pj_1) \cdot E_T(pj_2)$

inchirod by

for
ets:
$$a_T = \frac{E_{T j2}}{M_{T j1j2}} = \frac{\sqrt{E_{T j2}/E_{T j1}}}{\sqrt{2(1 - \cos\Delta\phi)}} \le 0.5$$

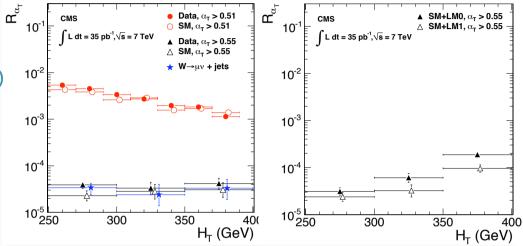
Expectation for QCD: $\alpha_T = 0.5$
Jet mis-measurements: $\alpha_T < 0.5$
wile 2011 Henning Flaecher $\alpha_T = \frac{1}{2} \frac{H_T - \Delta H_T}{M_T}$
 $\alpha_T = \frac{1}{2} \frac{H_T - \Delta H_T}{M_T}$
(form two pseudo-jets – defined by
balance in "pseudo-jet" $H_T = \Sigma E_T$



SUSY searches: jets + missing energy

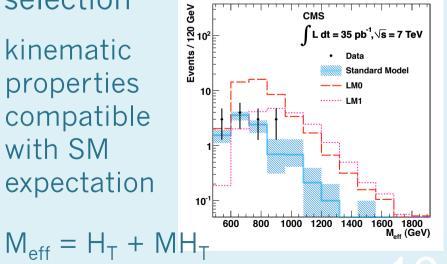
- Event selection:
 - Require >=2 jets with $p_T > 50$ GeV
 - leading 2 jets with $p_T > 100 \text{ GeV}$
 - Scalar sum of jet p_T , $H_T > 350 \text{ GeV}$
 - Explicit veto on
 - isolated el/mu with p_T>10 GeV
 - photons with $p_T > 25 \text{ GeV}$
 - α_T > 0.55
- QCD multijet events eliminated

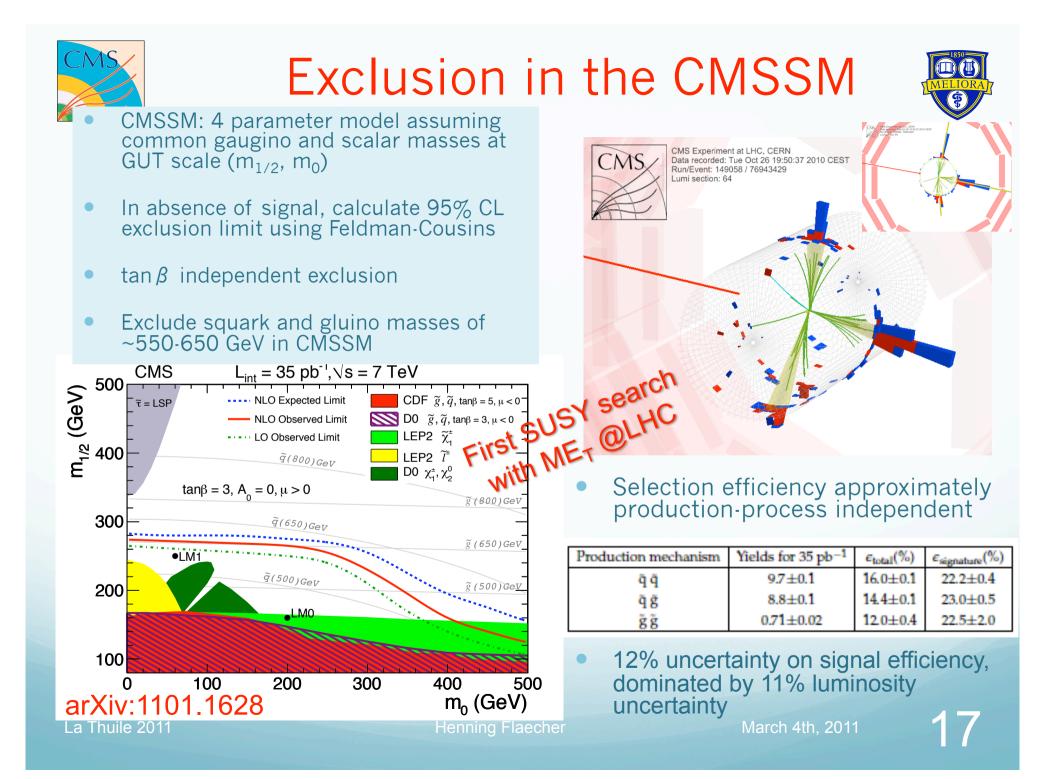
Selection	Data	SM	QCD multijet	$Z \to \nu \bar{\nu}$	W + jets	tī
$H_{\Upsilon} > 250 \text{ GeV}$	4.68M	5.81M	5.81M	290	2.0k	2.5k
$E_{T}^{ip} > 100 \text{GeV}$	2.89M	3.40M	3.40M	160	610	830
$H_{\Upsilon} > 350 \mathrm{GeV}$	908k	1.11M	1.11M	80	280	650
$\alpha_T > 0.55$	37	30.5 ± 4.7	19.5 ± 4.6	4.2±0.6	3.9 ± 0.7	2.8 ± 0.1
$\Delta R_{\rm ECAL} > 0.3 \lor \Delta \phi^* > 0.5$	32	24.5 ± 4.2	14.3 ± 4.1	4.2 ± 0.6	3.6 ± 0.6	2.4 ± 0.1
$R_{\rm miss} < 1.25$	13	9.3±0.9	0.03 ± 0.02	4.1 ± 0.6	3.3±0.6	1.8 ± 0.1


SUSY searches: jets + missing energy

SM backgrounds predicted with 3 data-driven methods

- Total background (QCD, W/tt, $Z \rightarrow vv$) extrapolating α_{T} ratio ($R_{\alpha T}$) from low H_{T} to high H_{T} region
 - Two methods based on data only:
 - 1) exponential H_T dependence: 9.4^{+4.8}-4.0 stat ± 1.0_{syst}
 - 2) No HT dependence (const. $R_{\alpha T}$) 12.5 ± 1.9_{stat} ± 0.7_{syst}
- W/tt background from muon control sample
 - invert muon veto
 - $6.1^{+2.8}$. 1.9stat ± 1.8syst
- $Z \rightarrow vv$ background from photon control sample
 - invert photon veto
 - $4.4^{+2.3}$.1.6stat ± 1.8_{svst}

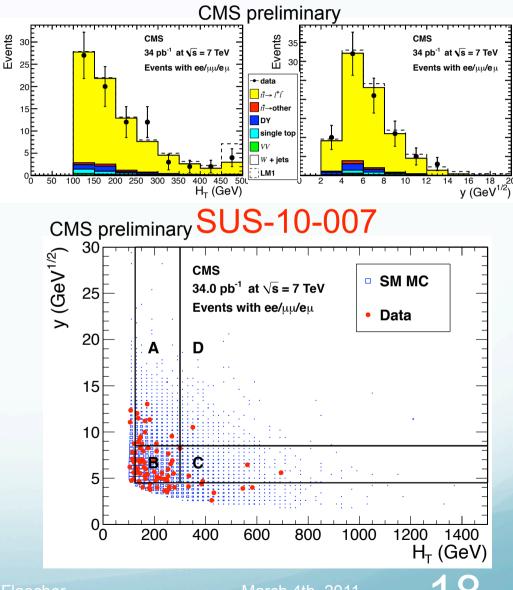

arXiv:1101.1628 La Thuile 2011



13 events in data after full selection

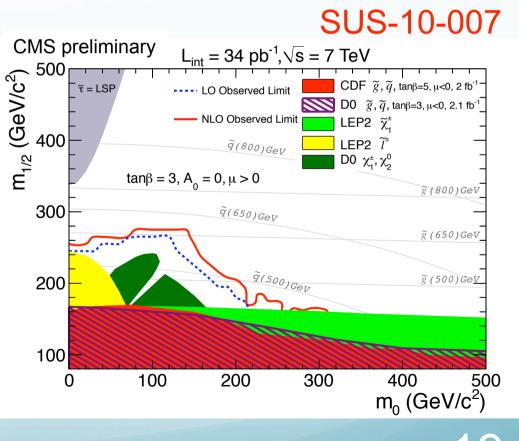
kinematic properties compatible with SM expectation

Henning



SUSY Searches: jets+ME_T+2leptons (OS)

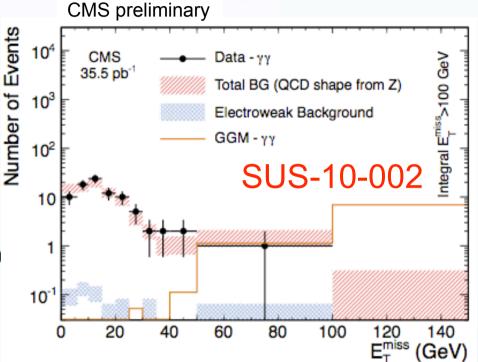
- Selection:
 - 2 isolated leptons (e or μ) with p_T > 10 GeV
 - opposite charge
 - Presence of leptons strongly reduce QCD background
 - >=2 jets with p_T > 30 GeV and | η |<2.5
 - require $H_T > 300$ GeV and y=ME_T/ $\sqrt{H_T} > 8.5 \sqrt{GeV}$ to suppress top background
 - define signal and control regions in both variables (uncorrelated)
 - Relate SM BG in signal region as $N_D = N_A x N_C / N_B$
 - Additionally use similarity of lepton and neutrino spectra to model missing energy distribution
 - Cross check same flavour tt background with opposite flavour events



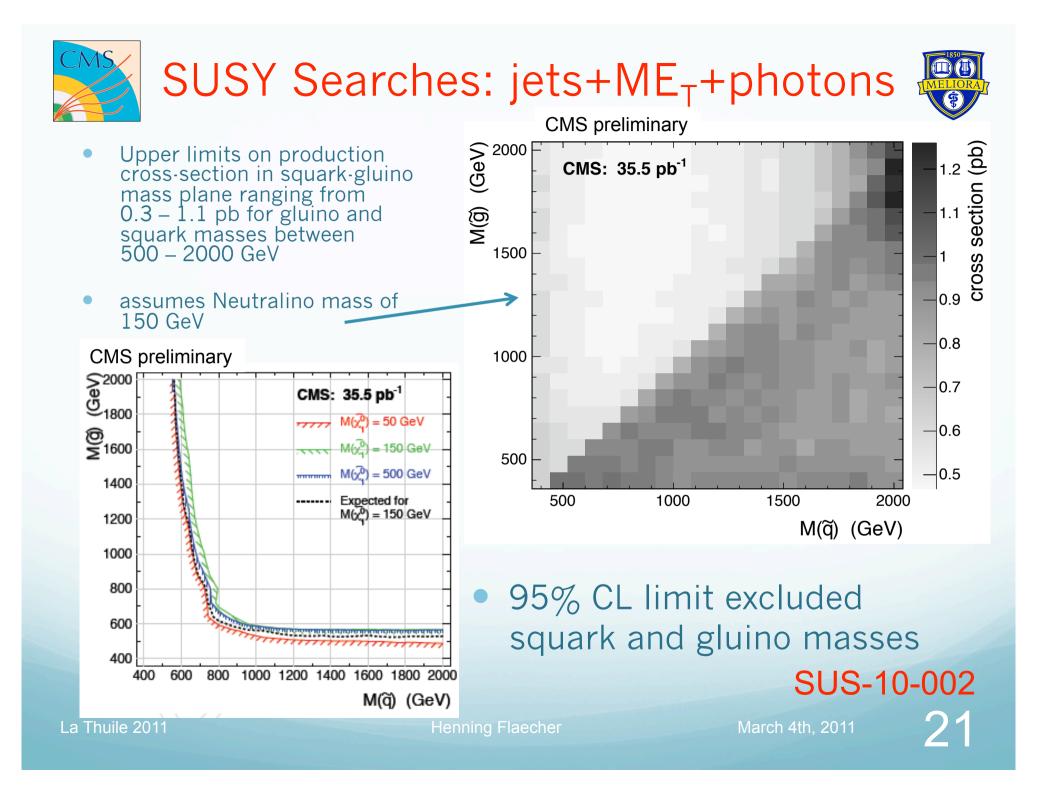
SUSY Searches: jets+ME_T+leptons

- Set limit in absence of signal
- 95% CL upper limit on BSM contribution is 4.7 events
- limit $\tan \beta$ dependent and most sensitive for low $\tan \beta$ values
- extended reach over Tevatron tri-lepton analysis
- Equivalent search in same sign dilepton channel: SUS-10-004

Data	BG Prediction	SM MC
1	1.4 ± 0.8	1.3

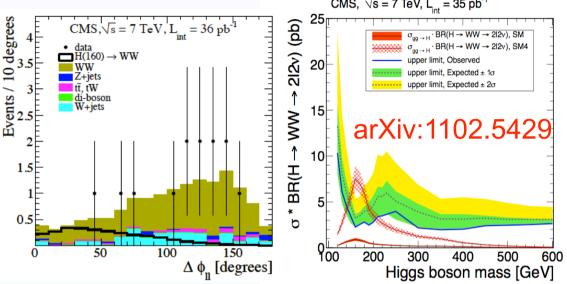


SUSY Searches: jets+ME_T+diphotons



- Search for General Gauge Mediated SUSY Breaking
 LSP is the gravitino
 - Neutralino is NLSP
 - decaying to photon and gravitino
- Event selection
 - photon candidates with $p_T > 30$ GeV and $|\eta| < 1.4$ (barrel)
 - >=1 jet with p_T > 30 GeV and | η | < 2.6
- Main Backgrounds:
 - QCD processes with diphoton or photon + jet production
 - W→ev + jets with electron misidentified as photon
 - estimated from Z→ee data control sample

No excess of diphotons events observed


WW production and consequences for Higgs search

- Diboson production main background to H→W⁺W⁻ channel
- select two high-p_T, oppositely charged isolated leptons
 - p_T > 20 GeV
- Missing E_T > 20 GeV and projected ME_T > 35 GeV
- Z veto: $M_{II} > M_Z + 15 \text{ GeV}$
- top veto:
 - jet veto (p_T > 25 GeV), soft muon & b-tag veto
- To gain sensitivity to Higgs→W⁺W⁻ consider opening angle of leptons ΔΦ_{II} and M_{II}

arXiv:1102.5429

La Thuile 2011

W⁺W⁻ cross section:

- 13 events in data with estimated BG of $3.3 \pm 0.5_{stat} \pm 1.1_{syst}$
- $\sigma_{W+W} = 41.1 \pm 15.3_{stat} \pm 5.8_{syst} \pm 4.5_{lumi} \, pb$
- SM: σ_{W+W} = 43.0 ± 2.0 pb @ NLO
- SM $H \rightarrow W^+W^-$ cross section limits:
 - 3 times SM @ M_H = 160 GeV @ 95%CL
 - Sequential fourth family of fermions with very high masses and Higgs with SM couplings
 - 144 < M_H < 207 GeV excluded @ 95% CL

Conclusions & Outlook

- New Physics searches well underway
 - with focus on data driven background estimation methods
- Investigating a wide variety of New Physics scenarios:
 - Excited V-Bosons
 - Leptoquarks
 - Extra-Dimensions
 - Supersymmetry
 - Higgs
 - and many more I didn't have time to cover
 - see <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>
- Unfortunately no smoking gun seen so far, but
- CMS (and ATLAS) have entered new territory, superseeding Tevatron searches in many areas

Many more exciting results can be expected for Summer

La Thuile 2011

Henning Flaecher

March 4th, 2011

