Electroweak Physics at the Tevatron

Jadranka Sekaric (University of Kansas)

For the CDF and DØ Collaborations

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile, Italy

EW Physics at the Tevatron

- Probe of the EW Symmetry Breaking Mechanism SM test, SU(2) x U(1) gauge structure Indirect new physics searches
- Cross section measurements, differential distributions, trilinear gauge boson couplings (TGCs)
- Background to Higgs, Top, SUSY
- Higgs Physics

Proving ground for analysis techniques and statistical treatment used in the Tevatron Higgs searches (MVA)

 Recent EW CDF and DØ results will be presented W/Z measurements and Dibosons

http://www-cdf.fnal.gov/physics/ewk/

http://www-d0.fnal.gov/Run2Physics/WWW/results/ew.htm

H⁰

antiprotor

protor

antiprotor

Tevatron Experiments

- Silicon TrackerCentral Outer
 - Tracker
- Solenoid
- Calorimeter
- Muon Detectors

980 GeV

 $\sqrt{s} = 1960 \text{ GeV}$

980 GeV

Silicon Tracker
Central Fiber Tracker

Solenoid
Calorimeter
Muon System

Multipurpose detectors (operate with ~ 90% efficiency)

Integrated RunII Luminosity (recorded) > 9 /fb per experiment

• Expected (recorded): ~10 /fb per experiment before end of Tevatron

Integrated luminosty/week (50 - 60) /pb \Rightarrow W and Z boson factory

$$m_{w} = \left(\frac{\pi \cdot \alpha \cdot m_{z}^{2}}{G_{F}\sqrt{2}}\right) \frac{1}{\sin \theta_{w}\sqrt{1 + \Delta r_{w}}}$$

- EW radiative corrections: $\Delta r_{_{W}} = \Delta \alpha + \Delta \rho(m_{_{top}}^2) + \Delta \chi(ln(m_{_{H}}))$
- MSSM \Rightarrow m_W + ~250 MeV

A precise measurement of m_W can be used to make indirect constraints on Higgs mass and possible New Physics

LEP/SLD/CDF/DØ, LEPII direct, combined precision EW measurements: $m_{\rm H} < 186~GeV @ 95\%~CL$

Most precise single W mass measurement

Combined Measurements

arXiv:0908.1374v1 [hep-ex]

Both CDF and DØ are heading to more precise measurement, ~ 25 MeV/c²

W Charge Asymmetry

Due to different PDFs of incoming partons in pp-bar collisions

W Charge Asymmetry

Due to different PDFs of incoming partons in pp-bar collisions

W Charge Asymmetry at CDF

Inclusive W boson charge asymmetry in a good agreement with CTEQ6.1, CTEQ6.6 and MRST2006NNLO

Lepton Charge Asymmetry at CDF and DØ

Ζ/γ* **pT Measurement**

Test of QCD predictions and current event generators Unfolded $Z/\gamma^* \rightarrow \mu\mu pT$ distribution (to the particle level)

13

Ζ/γ* **pT Measurement**

Resummation describes data well (Z pT < 30 GeV) NLO pQCD describes data shape the best (Z pT > 30 GeV)

14

Ζ/γ* **φ*** Measurement

Novel technique, relies on Φ_{η}^* variable: probes same physics as Z/ γ^* pT

a_T: Component of pT(II) transverse to dilepton thrust axis less sensitive than pT(II) to detector effects (resolution, efficiency)

 Φ_{η}^{*} : Highly correlated with (a_T/m_{\parallel}) θ_{η}^{*} : Angle of leptons wrt beam, in the rest frame of dilepton system Depend on the angular resolution

(measured precision of ~1 mrad)

 Φ_n^* is measured better than any quantity that rely on the pT(II)

Ζ/γ* **pT Measurement**

Unfolded $Z/\gamma^* \rightarrow ee/\mu\mu \Phi_n^*$ distributions, normalized as $(1/\sigma) \times (d\sigma/d\Phi_n^*)$

RESBOS does not describe the detailed shape of the data Small-x broadening prediction is strongly disfavored by data

dσ/dy of Drell-Yan e⁺e⁻ pairs

 $\sigma \times BR(Z \rightarrow ee) = 256.6 \pm 15.5 \text{ (stat + syst)}$

Model	Total cross section
CTEQ5L(LO)	183.3
MRST2001E(NLO)	$241.0^{+2.8}_{-3.4}$
MRST2004(NLO)	241.2
MSTW2008E(NLO)	$242.6^{+4.6}_{-5.5}$
CTEQ6.1M(NLO)	$236.1^{+9.3}_{-9.2}$
CTEQ6.6M(NLO)	$238.7^{+7.1}_{-7.0}$
MRST2006E(NNLO)	$251.6^{+2.8}_{-3.1}$
MSTW2008E(NNLO)	$248.7^{+5.1}_{-4.0}$
Data	$256.6 \pm 0.7 \pm 2.0 \pm 15.4$

Angular Coefficients of Drell-Yan e⁺e⁻ pairs

Angular distribution of the electron in Collins - Soper CM frame:

Angular Coefficients of Drell-Yan e⁺e⁻ pairs

Angular Coefficients of Drell-Yan e⁺e⁻ pairs

Ζγ **Production**

Ζγ **Production**

• Photon E_T spectra for setting the TGC limits • 95% CL limits from 1D fit (Λ = 1.5 TeV)

h ₃ ^Z	[-0.017, 0.016]	h ₄ ^Z	[-0.0006, 0.0005]
h_{3}^{γ}	[-0.017, 0.016]	h_4^{γ}	[-0.0006, 0.0006]

Tightest limits on $\gamma ZZ/\gamma \gamma Z$ couplings to date

22

ZZ Production

- Most recently observed diboson process at a hadron collider (5.3σ with IIII final state using 1.7 /fb @DØ in 2008)
- Theoretical cross section σ @NLO = 1.4 ± 0.1 pb
- BR(Z \rightarrow II, Z \rightarrow vv) ≈ 6 × BR(Z \rightarrow II, Z \rightarrow II) (σ ×BR_(ZZ \rightarrow IIII) ≈ 1%)
- Clean signal
- Single lepton cuts optimization / MET reconstruction

ZZ Production

ZZ Production

Help to distinguish between different scalar models

Q-H. Cao, C.B. Jackson, W-Y. Keung, I. Low, J. Shu,

WZ Production

- Not directly accessible at LEP
- ZWW vertex $\Rightarrow \kappa_Z$, λ_Z and g_1^Z couplings, independent of γ WW
- Theoretical cross section σ @NLO = 3.45 ± 0.30 pb
- BR(W \rightarrow Iv, Z \rightarrow II) \approx 3%
- Very clean signal with small background

WZ Production

WZ Production

Candidate Events: 34 Background: 6.0 ± 0.6 WZ: 23.3 ± 1.5

Events/10 GeV

 $\sigma_{(p\overline{p}\rightarrow WZ)} = 3.90^{+1.06}_{-0.90} \text{ (stat + syst)} \text{pb}$

95% CL limits from 1D fit ($\Lambda = 2.0 \text{ TeV}$)

Coupling relation	95% C.L. Limit
$\Delta g_1^Z = \Delta \kappa_Z = 0$	$-0.075 < \lambda_Z < 0.093$
$\lambda_Z = \Delta \kappa_Z = 0$	$-0.053 < \Delta g_1^Z < 0.156$
$\lambda_Z = \Delta g_1^Z = 0$	$-0.376 < \Delta \kappa_Z < 0.686$
$\Delta \kappa_Z = 0 \text{ (HISZ)}$	$-0.075 < \lambda_Z < 0.093$
$\lambda_Z = 0 $ (HISZ)	$-0.027 < \Delta \kappa_Z < 0.080$

Summary EW Tevatron

- (1 7) /fb data analyzed by CDF and DØ
- Agreement with the SM predictions
- Test of different models/predictions
- Importance for Higgs searches
- Most stringent TGC limits set at the Tevatron
- Precise Tevatron Electroweak Measurements ongoing (including dijet final states)

Backup Slides

Event Signature at CDF and DØ

EM cluster (Electron or Photon)

good EM shower shape small HAD energy isolated in calorimeter match to a track if electron

Muons

Isolated in the CAL and tracker hits in muon system match to a track

Jets

good HAD shower shape large HAD energy minimal EM energy (match to a tracks)

W (leptonic) selection

exactly one charged lepton energy imbalance in reconstructed event, associated with neutrino (MET)

Z (leptonic) selection

2 oppositely-charged leptons invariant mass consistent with m_z 32

 m_W (GeV/c²): 80.401 ± 0.021 (stat) ± 0.038 (syst)

Most precise single W mass measurement

0.2

0.2 /fb (electon + muon)

 m_T , electron p_T , MET combined

 m_W (GeV/c²): 80.413 ± 0.034 (stat) ± 0.034 (syst)

* 2.4 /fb (electron) + 2.3 /fb (muon) 3 × smaller Δm_z (stat)

W Width Measurement

 2.028 ± 0.039 (stat) ± 0.061 (syst)