

First heavy-ion results from ALICE at the LHC

Les Rencontres de Physique de la Vallée d'Aoste

Andrea Dainese (INFN Padova, Italy) on behalf of the ALICE Collaboration

→ largest energy jump (×14) in the history of Heavy Ion Physics!

Talk Outline

- QCD matter in extreme conditions at the LHC
- First Pb-Pb run and ALICE
- First characterization of QCD matter properties:
 - particle multiplicity
 - Bose-Einstein particle correlations
 - collective flow of produced particles
 - suppression of hard particles
- What will come next: outlook
- Conclusions

ALICE Pb-Pb papers so far: PRL 105, 252301 (2010) PRL 106, 032301 (2011) PLB 696, 328 (2011) PRL 105, 252302 (2010) PLB 696, 30 (2011)

QCD matter under extreme conditions

At high energy density (high temperature and/or high density) hadronic matter undergoes a phase transition to the *Quark-Gluon Plasma* (QGP)

- a state in which colour confinement is removed
- and chiral symmetry is restored
- a high-density QCD medium of "free" quarks and gluons

The Little Bang in the lab

INFN

◆ QCD phase transition (QGP → hadrons) at $t_{\text{Universe}} \sim 10 \ \mu\text{s}$ at $\mu_{\text{B}} = 0$

In high-energy heavy-ion collisions large energy densities
 (> 2–3 GeV/fm³) are reached over large volumes (>> 100 fm³)

• QGP hints at **CERN-SPS**, $\sqrt{s_{NN}} = 17 \text{ GeV}$

> energy density ~ 1 × critical value ε_c

- First QGP properties at BNL-RHIC, √s_{NN} = 200 GeV
 > energy density ~ 10 × critical value ε_c
- Ultimate QGP machine: **CERN-LHC**, $\sqrt{s_{NN}} = 2.76 5.5$ TeV

The Little Bang in the lab

- > energy density ~ 30-50 (??) × critical value ε_c
- much higher initial temperature
- also very important: more physis tools to study the system produced
 - o high-energy jets
 - o heavy quarks
 - o photons and vector bosons (W, Z⁰)

ALICE Heavy Ion Program

 \rightarrow see E. Scomparin

- ALICE is a multi-purpose experiment
- Reconstruct and identify most of the particles emerging from the collision in order to:
- Determine the global properties of the extended QCD state produced in Pb-Pb collisions
 - redundant tracking with low field (0.5T) and material budget
 - \rightarrow sensitivity to the bulk of particles
 - > extensive particle identification
 → hadrochemical properties at freeze out
- Assess its temperature and density by studying rare probes
 - high-momentum, jets
 - heavy flavour, quarkonia
 - > photons

... first ALICE Pb-Pb data taking

- Loose trigger based on minimum bias interaction
- Catches ≈98% of Pb-Pb inelastic cross section

MB Triggers: combinations of the following detectors

- 1. SPD Fast-Or (1 or 2 hits)
- 2. V0 (A side)
- 3. V0 (C side)
- High Multiplicity, Zero Bias and ultraperipheral triggers also used
- TOTAL of over 90 M recorded triggers

Rencontres de Physique, La Thuile, 01.03.11

INFN

Energy density \approx **3×RHIC** (at same time τ_0)

> lower limit, likely $\tau_0(LHC) < \tau_0(RHIC)$

 $\varepsilon(\tau_0) = \frac{E}{V} = \frac{1}{\tau_0 A} \frac{dN}{dy} < m_t >$ somewhat on high side of expectations \succ growth with \sqrt{s} faster in AA than pp

November 17: First Results on Charged Particle Multiplicity

Central Pb-Pb (from pixels): dN_{ch}/dŋ = 1584±76 (syst)

PRL 106, 032301 (2011)

Bose-Einstein correlations: extended system of QCD matter

- Measure the Bose-Einstein enhancement for pairs of pions (identical bosons) at low momentum difference q_{inv}=|p₁-p₂|, vs. multiplicity
- Assess the space-time extension of the system that emits particles in Pb-PB collisions (homogeneity volume)

November 17: Collectivity! First Results on Elliptic Flow

- System geometry asymmetric in noncentral collisions
- Hydro-dynamic models:
 - expansion under azimuth-dep.
 pressure gradient
 - results in azimuth-dep. momentum distributions
- Measured by the elliptic flow

parameter $v_2(p_t) = \langle \cos(2\phi) \rangle(p_t)$

- Size of v₂ provides a measure of strength of collectivity (mean free path of gluons)
 - > Extreme: perfect liquid (zero mean free path) \rightarrow liquid He, QGP at RHIC?
 - What about LHC? can it be more perfect than at RHIC?

An atomic analogue: Liquid Helium explodes in vacuum

v₂ extracted based on 2 and 4 particle cumulants

methods well established based on RHIC experience

p_t dependence very close to RHIC measurements (in centrality classes)

→ expected based on hydrodynamic models

- Large elliptic flow reaches hydro-dynamical limit
 - strong pressure gradient, system close to full thermalization
- Increase with energy larger than predicted for perfect liquid (zero viscosity)
 - > need viscous corrections (more important at RHIC than LHC)
 - closer to perfect liquid at LHC than at RHIC?

Global properties of QCD matter at the LHC

- ◆ Energy density ×3 wrt RHIC → > 15 GeV/fm³ Hotter
- ◆ Freeze-out volume ~ 300 fm³ → ×2 wrt RHIC **Larger**
- ◆ Decoupling time ~11 fm/c \rightarrow ×1.4 wrt RHIC **Longer-lived**
- Elliptic flow as expected for close-to-perfect liquid
- Initial state gluon saturation less strong than expected

What about Jet Quenching?

 \rightarrow see P. Steinberg,

G. Tonelli

- Striking di-jet imbalance observed by ATLAS and CMS
- ALICE EMCal coverage limited in 2010
- Jet reconstruction with charged tracks from TPC ($|\eta|$ <1)
 - > we see qualitatively a similar effect
 - goal: study effect down to low p_t, study onset of di-jet imbalance

High-momentum particle suppression

Nuclear modification factor of p_t spectra

$$R_{AA} = \frac{\text{Yield in } Pb + Pb}{N_{coll} \times \text{Yield in } p + p}$$

- Factor 4-5 suppression at RHIC, p_t-indep?
- No suppression for γ's
 (blind to strong inter.)
- Parton energy loss in dense QCD medium

Expect coverage 5<pt<15 GeV/c

Expect few 1000 J/ ψ from full 2010 statistics

3.8

Conclusions

- LHC and ALICE performed well in the first Pb-Pb run
- Global properties of QCD matter at LHC from analysis of partial statistics
 - Highest charged particle density ever reached
 - Its centrality dependence saturates
 - Very large volume of particle emitting source
 - Hadrons flow close to hydro limit
 - > High p_t suppression stronger than at RHIC and rises with p_t
- Many more analyses in progress
 - particle type dependencies
 - charmonium
 - heavy quarks
 - > jets
 - > ...

EXTRA SLIDES

Rencontres de Physique, La Thuile, 01.03.11

Andrea Dainese

The Little Bang in the lab

26

◆ QCD phase transition (QGP → hadrons) at $t_{\text{Universe}} \sim 10 \text{ µs}$

In high-energy heavy-ion collisions, large energy densities
 (> 2–3 GeV/fm³) are reached over large volumes (>> 100 fm³)

INFN

Tracking in Pb-Pb

Rencontres de Physique, La Thuile, 01.03.11

INFN

Andrea Dainese

27

Measurement of $dN_{ch}/d\eta$ in central Pb-Pb at 2.76 TeV

- First glimpse of the features of the high-density QCD state produced in these collisions
 - Related to the energy density and gluon density in the system
 - Strong test/constraint for theoretical models
- Data sample: ~50 000 Pb-Pb m.b. collisions collected on Nov 9
- Select the 5% most central using V0 amplitude (0-5% centrality class)
- Measurement based on pixel tracklets (as for our pp publications)
 - > correlate hits on the two layers within a narrow $\Delta \phi \propto \Delta \theta$ window from the primary vertex

dNch/deta - Backup

- 90% of QED processes in ultra-peripheral collisions give close to 0 mult.
- 1% background in the sample eliminated by
 - V0 timing selection
 - correlation between #TPC tracks and #hits in SPD inner layer
- Three methods for comb. background
 - From MC
 - from data: pixel inner layer rotation by 180deg
 - from data: injection of random hits
- Consistent results
- Measurement cross-checked with TPC-only tracks and with global (TPC +ITS) tracks
- ♦ Low p_t cutoff (50 MeV/c)
 ▶ angular window
 ▶ absorption in material
 Backgroup Particle Contain Low-p_t
- Particle comp. varied by 50%
- Strangeness by factor 2

Source	
Background subtraction	2%
Particle composition	1%
Contamination by weak decays	1%
Low- $p_{\rm t}$ extrapolation	2%
Event generator	2%
Centrality definition	3%
Total (added in quadrature)	5%

Centrality done also with SPD and varying Glauber fit range

v2 - Backup

INFN

- v_2 {4} insensitive to nonflow contributions (BE, resonances, jets)
 - we estimate 5% nonflow contr. to v_2 {2} by comparing with cumulants with same-charge tracks
- flow fluctuations have increase v_2 {2} and decrease v_2 {4}

