

Recent Results from Belle

Jeri M.-C. Chang (Belle Collaboration)

Fu Jen Catholic University, Taiwan 2011/March/2

Outline

- Luminosity Record at Belle; Belle-II & super KEKB groundbreaking
- Measurement for CKM UT sides $|V_{ub}|$ and $|V_{cb}|$; First Evidence for the Suppressed Decay : B⁻ \rightarrow DK⁻ with D \rightarrow K⁺ π^-
- New Physics: CP violation in D and τ decays?

Luminosity Record at B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1 "Last beam abort" ceremony on June 30, 2010

Belle >1ab⁻¹

On resonance: $> Y(5S): 121fb^{-1}$ $> Y(4S): 711fb^{-1}$ $> Y(3S): 3fb^{-1}$ $> Y(2S): 24fb^{-1}$ $> Y(1S): 6fb^{-1}$ Offreson./scan: ~100fb^{-1}

BaBar ~550fb⁻¹

On resonance: $> Y(4S): 433fb^{-1}$ $> Y(3S): 30fb^{-1}$ $> Y(2S): 14fb^{-1}$ Offresonance: $\sim 54fb^{-1}$

Jeri (Belle Collaboration), La Thuile 2011 March

Belle-II & super KEKB status at KEK, Japan

- 1. KEKB upgrade project was approved in 2010/Jun. A groundbreaking ceremony will be held on April 8, 2011.
- 2. Luminosity goal: $8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$.
- Plan of super KEKB: commission in 2014, reach the 50ab⁻¹ in 2020~2021.
- 4. Please check Y. Horii's talk for more detail. (Mar.5)

57 institutions in 13 countries.

Jeri (Belle Collaboration), La Thuile 2011 March

Belle detector

- 1. Reprocessed data (tracking efficiency improvement).
- 2. Systematic improvement (using full data sample).
- 3. The tracking systematic goes from 1% to 0.35%.

Measurement of CKM UT sides

•Inclusive $|V_{ub}|: B \rightarrow X_u | v$ •Inclusive $|V_{cb}|: B \rightarrow X_c | v$ •Exclusive $|V_{ub}|: B \rightarrow \pi | v$ •Exclusive $|V_{cb}|: B \rightarrow D^* | v$

Inclusive decays: $b \rightarrow q \mid v$ Exclusive decays: $B \rightarrow X_q \mid v$ Weak quark decay + QCD corrections Form factors, need lattice QCD

#1 Exclusive $|V_{ub}|: B^0 \rightarrow \pi^- l^+ \nu$ V_{ub} Here final state is $B^0 \rightarrow \pi^- l^+ \nu$, $l=e,\mu$ Measurement is done with the equation, $\frac{d\Gamma(\mathbf{B} \to \pi^- \ell^+ \nu)}{dq^2} = \frac{G_F^2}{192\pi^2 m_b^3} |V_{ub}|^2 \lambda (q^2)^{\frac{3}{2}} (f_+^{\pi} + q^2)^2 = (p_\ell + p_\nu)^2 = (p_B - p_\pi)^2$ Need extra input, determined by theorist

Basic parameters

□ A charged pion and a lepton as a signal side

missing 3 momentum

$$\vec{p_{\rm miss}} \equiv -\sum_i \vec{p_i}$$

neutrino 4 momentum

 $p_{\nu} = (|\vec{p}_{\text{miss}}|, \vec{p}_{\text{miss}})$

 \Box Momentum transfer, q^2

$$q^2 = (p_\ell + p_\nu)^2 = (p_{\rm B} - p_\pi)^2,$$

averaged over B direction ambiguity

□ Estimate B yield by fitting distributions,

$$m_{\rm bc} = \sqrt{E_{\rm beam}^2 - \left|\vec{p_{\pi}} + \vec{p_{\ell}} + \vec{p_{\nu}}\right|^2}$$

$$\Delta E = E_{\rm beam} - (E_{\pi} + E_{\ell} + E_{\nu})$$

$$\sigma_{q^2} \sim 0.5 \, \mathrm{GeV}^2$$

Y (4S) B rest frame

0.1

0.08

0.06 0.04

0.02 0

-10

10

arXiv:1012.0090 Submitted to PRD(RC)

Yield extraction, $\Delta E-M_{bc} 2D$ Fit, 605fb⁻¹

Jeri (Belle Collaboration), La Thuile 2011 March

$|V_{ub}|$, uncertainty from Models

 $V_{\rm ub}$ can be extracted from the partial Branching Fraction,

$$|V_{\rm ub}| = \sqrt{\Delta \mathcal{B}(q^2)/\tau_{\rm B^0}\Delta\zeta},$$

where,

 $\Delta \zeta$: form factor in corresponding q^2 range

Result

	q^2 (GeV ²)	$\Delta \zeta \text{ (ps}^{-1}\text{)}$	$ V_{\rm ub} (10^{-3})$
HPQCD	> 16	2.07 ± 0.57	$3.55 \pm 0.09 \pm 0.09^{+0.62}_{-0.41}$
FNAL	> 16	1.83 ± 0.50	$3.78 \pm 0.10 \pm 0.10 ^{+0.65}_{-0.43}$
LCSR	< 16	5.4 ± 1.4	$3.64 \pm 0.06 \pm 0.09^{+0.60}_{-0.40}$
ISGW2	all	9.6 ± 4.8	$3.19 \pm 0.04 \pm 0.07^{+1.32}_{-0.59}$

Form factor uncertainties largest contribution

|V_{ub}|, Belle data

• F.F. model independent V_{ub} extraction method (PRD**79**054507 (2009))

- $f(|V_{ub}|; f(z)) = f(|V_{ub}|; a_0 + a_1 z + a_2 z^2 + a_3 z^3)$
- $z = z(q^2)$
- simultaneous fit with
 - MILC lattice result,
 - Belle experimental result

arXiv:1012.0090 Submitted to PRD(RC) $|V_{ub}| = (3.43 \pm 0.33) \times 10^{-3}$

(Stat. and syst. Errors combined)

#2 Exclusive $|V_{cb}|: B \rightarrow D^* I^+ v$

 $\frac{d\Gamma(B \to D^* \ell \nu)}{dwd \cos \theta_\ell d \cos \theta_V d\chi} = \mathcal{F}(w) =$

$$= \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (w^2 - 1)^{1/2} P(w) \mathcal{F}(w, ...)^2$$

$$\Rightarrow \mathcal{F}(w, \cos \theta_{\ell}, \cos \theta_{V}, \chi, R_1, R_2, \rho^2)$$

- Fit angular distributions, $\cos \theta_{\ell}$, $\cos \theta_{V}$, $\chi \Rightarrow$ Form Factors R_1 , R_2 , ρ^2
- simultaneously fit w distribution to get $\mathcal{F}(1)|V_{cb}|$
- $|V_{cb}|$ is obtained with $\mathcal{F}(1)$ from FF calculation. Kinematic variables

•
$$w = \frac{p_B^{\mu} \cdot p_{D^*,\mu}}{m_{B^0} m_{D^*}} = a + b q^2$$

• $\cos \theta_\ell, \cos \theta_V, \chi$

Belle 711fb⁻¹ B \rightarrow D * $\ell \nu$ Analysis

Jeri (Belle Collaboration), La Thuile 2011 March

Exclusive $B \rightarrow D^* \ell \nu$ Results

Belle PRD 82, 112007(2010)				
	$B^+ \rightarrow \bar{D}^{*0} \ell \nu$	$B^0 \rightarrow D^{*-} \ell \nu$		
$\mathcal{B}(B \to D^* \ell \nu)$	$(4.84 \pm 0.04 \pm 0.56)\%$	$(4.56 \pm 0.03 \pm 0.26)\%$		
$\mathcal{F}(1) V_{\rm cb} \times 10^3$	$35.0 \pm 0.4 \pm 2.2$	$34.5 \pm 0.2 \pm 1.0$		
BaBar				
	$\mathrm{B}^+ \to \bar{\mathrm{D}}^{*0} \ell \nu$	$B^0 \rightarrow D^{*-} \ell \nu$		
$\mathcal{B}(B \to D^* \ell \nu)$	$(5.56 \pm 0.08 \pm 0.41)\%$	$(4.69 \pm 0.04 \pm 0.34)\%$		
$\mathcal{F}(1) V_{\rm cb} \times 10^3$	$35.9 \pm 0.6 \pm 1.4$	$34.4 \pm 0.3 \pm 1.1$		
	PRL100,231803(2008)	PRD77,032002(2008)		
	Global B $\rightarrow \bar{D}X\ell\nu$			
$\mathcal{B}(B \to D^* \ell \nu)$	$(5.40 \pm 0.02 \pm 0.21)\%$			
$\mathcal{F}(1) V_{\rm cb} \times 10^3$	$35.9 \pm 0.2 \pm 1.2$			
	PRD79, 012002(2009)			

World average

#3 First Evidence for the Suppressed Decay: $B^- \rightarrow DK^$ with $D \rightarrow K^+\pi^-$

• Two diagrams exist for $B^- \rightarrow DK^-$, $D \rightarrow K^+\pi^-$.

The two passes interfere, provide important information of ϕ_3 .

ADS, PRL78, 3257 (1997).

 $r_{B(D)}$: ratio of the amplitudes of the two B(D) decays $\delta_{B(D)}$: strong phase difference of the two B(D) decays

 By applying a 2-D fit on ΔE and NeuroBayes(NB), the first evidence of the signal is obtained with a significance of 4.1σ (including syst).

NB = a variable newly-introduced to discriminate between signal and BG from e⁺e⁻→qq. (q = u, d, s, c.)

Calibration mode

• From the obtained yield, we evaluate

$$\mathcal{R}_{DK} \equiv \frac{\mathcal{B}([K^{+}\pi^{-}]_{D}K^{-}) + \mathcal{B}([K^{-}\pi^{+}]_{D}K^{+})}{\mathcal{B}([K^{-}\pi^{+}]_{D}K^{-}) + \mathcal{B}([K^{+}\pi^{-}]_{D}K^{+})} \\ = [1.63^{+0.44}_{-0.41}(\text{stat})^{+0.07}_{-0.13}(\text{syst})] \times 10^{-2} \\ \text{where } \mathcal{R}_{DK} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\phi_{3})}$$

We also obtain the CP asymmetry as

$$\mathcal{A}_{DK} \equiv \frac{\mathcal{B}([K^{+}\pi^{-}]_{D}K^{-}) - \mathcal{B}([K^{-}\pi^{+}]_{D}K^{+})}{\mathcal{B}([K^{+}\pi^{-}]_{D}K^{-}) + \mathcal{B}([K^{-}\pi^{+}]_{D}K^{+})}$$

= $-0.39^{+0.26}_{-0.28}(\text{stat})^{+0.04}_{-0.03}(\text{syst})$

which is related to ϕ_3 as

 $A_{DK} = 2r_B r_D \sin(\delta_B + \delta_D) \sin\phi_3 / \mathcal{R}_{DK}$ Our result of A_{DK} is also the most precise.

The ϕ_3 can be extracted from the simultaneous fit using R_{DK} , A_{DK} , and other observables for B⁻ $\rightarrow D_{CP}$ K⁻

Compared with previous results

Can we find CP Violation in D decays?

- Searches for direct CP violation performed in total over 30 D⁰, D⁺ and D⁺_s decay modes in past 15 years
 - \hookrightarrow Belle, BaBar, Cleo, CDF, FOCUS, E796, E687
- No evidence for CP violation found so far

 \hookrightarrow Sensitivity is in some cases reaching 0.2%

- Measurements statistical limited
 - $\hookrightarrow \mathsf{All} \text{ measurements can be significantly improved}!$

$D^0 \rightarrow$	A _{CP} [%]	$D^+ \rightarrow$	A _{CP} [%]	$D_s^+ \rightarrow$	A _{CP} [%]
K^+K^-	-0.16 ± 0.23	$K_{S}^{0}\pi^{+}$	-0.72 ± 0.26	$K_{S}^{0}K^{+}$	-0.28 ± 0.41
$\pi^+\pi^-$	$+0.22\pm0.37$	$K_{S}^{0}K^{+}$	-0.09 ± 0.63	$K_{S}^{0}\pi^{+}$	$+6.5\pm2.5$
$\pi^+\pi^-\pi^0$	-0.23 ± 0.42	$K^+K^-\pi^+$	$+0.39\pm0.61$	$K^+K^-\pi^+$	$+0.3\pm1.4$
$K^-\pi^+\pi^0$	$+0.16\pm0.89$	$K^-\pi^+\pi^+$	-0.5 ± 1.0	$\pi^+\pi^-\pi^+$	$+2.0 \pm 4.7$
$K_{S}^{0}\pi^{0}$	$+0.10\pm1.3$	$K^-\pi^+\pi^+$	-0.5 ± 1.0	$K^+\pi^-\pi^+$	$+11.2\pm7.1$
$K^+K^-\pi^0$	$+1.00\pm1.7$	$K_{S}^{0}\pi^{+}\pi^{0}$	$+0.3 \pm 0.9$	$\pi^+\eta$	-8.2 ± 5.3
$\pi^0\pi^0$	$+0.10\pm4.8$	$\pi^{+}\pi^{-}\pi^{+}$	-1.7 ± 4.2	$\pi^+\eta'$	-5.5 ± 3.9
1					

How?

Key is to distinguish possible CPV asymmetry from detector effects and production asymmetry in reconstructed asymmetry

$$A^{\rm reco} = \frac{N_D^{\rm reco} - N_{\overline{D}}^{\rm reco}}{N_D^{\rm reco} + N_{\overline{D}}^{\rm reco}}$$

 $N_D^{\text{reco}} = N_D^{\text{prod}} \cdot \mathcal{B}(D \to f) \cdot \varepsilon_f \implies \text{if } A_i \ll 1 \implies \left| \mathbf{A}^{\text{reco}} = \mathbf{A}_{\mathsf{FB}}^{\mathsf{D}} + \mathbf{A}_{\mathsf{CP}}^{\mathsf{f}} + \mathbf{A}_{\epsilon}^{\mathsf{f}} \right|$

A^t AFR ACP CP asymmetry Production asymmetry Reconstruction asymmetry h^{\pm} reconstruction efficiency independent of any due to γ/Z interference in $e^+e^- \rightarrow c\overline{c}$ (only at e^+e^- coll.) kinematic variable asymmetry <u>e+</u> <u>(0*)</u> e⁻ $(p^{\text{lab}}, cos\theta^{\text{lab}})$

(anti-symmetric in $cos\theta_D^*$)

In order to control systematics A_i's are estimated on real data sample!

Method

Developed methods for measuring recon. asym. of $\pi^\pm_{\rm slow}$, π^\pm and K^\pm

Need to make assumptions:

- No CP violation in Cabbibo favored decays
- Porward-backward asymmetry the same for all charm meson species

#4 A_{CP} of D⁰ \rightarrow K_s⁰P⁰(P⁰= π^{0} , η , η') ^{791fb⁻¹} arXiv:1102.0888 Submitted to PRL

• A_{CP} in $D^0 \to K^0_S \pi^0$, $D^0 \to K^0_S \eta(\star)$ and $D^0 \to K^0_S \eta'(\star) \star \star$

k – first measurement

#4 A _{CP} of D ⁰ →K _s ⁰ (π ⁰ , η, η')				
Decay Lumi A_{CP} [%]				
$D^{+} \to \eta \pi^{+} 955 fb^{-1} +1.62 \pm 1.14 \pm 0.15$ $D^{+} \to \eta' \pi^{+} 955 fb^{-1} -0.12 \pm 1.13 \pm 0.18$	measurement in			
$D^+ \to \varphi \pi^+ 955 fb^{-1} + 0.51 \pm 0.28 \pm 0.05$ $D^0 \to K \pi^0 700 fb^{-1} = 0.28 \pm 0.10 \pm 0.10$	charmed particle			
$D^{0} \to K_{s} \pi^{-790} f b^{-1} = 0.28 \pm 0.19 \pm 0.10$ $D^{0} \to K_{s} \eta^{-790} f b^{-1} = +0.54 \pm 0.51 \pm 0.16$	sector (up to date)			
$D^0 \to K_s \eta' 790 fb^{-1} + 0.98 \pm 0.67 \pm 0.14$ $D^+ \to K \pi^+ 673 fb^{-1} = 0.71 \pm 0.19 \pm 0.20$	First measurement			
$D \to K_s \pi^+ \ 673 \ fb^{-1} + 5.45 \pm 2.50 \pm 0.33$	Results:			
$D^+ \to K_s K^+ \ 673 \ fb^{-1} \ -0.16 \pm 0.58 \pm 0.25$ $D^+ \to K_s K^+ \ 672 \ fb^{-1} \ +0.12 \pm 0.26 \pm 0.22$	SM			
$D_{s}^{0} \to K_{s}^{+}K^{-} 540 \ fb^{-1} - 0.43 \pm 0.30 \pm 0.11$	2. Most stringent			
$D^{0} \rightarrow \pi^{+}\pi^{-}$ 540 $fb^{-1} + 0.43 \pm 0.52 \pm 0.12$				

Can we find **CP violation in** τ ⁻ decays?

- CP violation has only been observed **in meson system**. How about in the **leptonic sector**?
- Its discovery would be clear evidence for New Physics (NP)!
- Previously published paper is by **CLEO** collaboration, **13.3fb**⁻¹.

CP violation results in $\tau \rightarrow K_s \pi \nu_{\tau}$

Results:

699fb⁻¹ arXiv:1101.0349 submitted to PRL

- 1. No significant CP asymmetry has been observed.
- 2. |Im(η_s)|< (0.012-0.026) at 90 %C.L.
- 3. One order of magnitude more restrictive than the previous CLEO results $|Im \eta_s| < 0.19$

Results in $\tau \rightarrow K_s \pi \nu_{\tau}$: set M_H limit

Summary

• Updated results using exclusive decays:

 $B^{0} \rightarrow \pi^{-} |^{+} \nu$ $\mathcal{B} = (1.49 \pm 0.04(\text{stat}) \pm 0.07(\text{syst})) \times 10^{-4}$ $|V_{ub}| = (3.43 \pm 0.33) \times 10^{-3}$ $B \rightarrow D^{*} |^{+} \nu$

 $\begin{array}{ccc} B^+ \to \bar{D}^{*0} \ell \nu & B^0 \to D^{*-} \ell \nu \\ \\ \mathcal{B}(B \to D^* \ell \nu) & (4.84 \pm 0.04 \pm 0.56)\% & (4.56 \pm 0.03 \pm 0.26)\% \\ \\ \mathcal{F}(1) |V_{\rm cb}| \times 10^3 & 35.0 \pm 0.4 \pm 2.2 & 34.5 \pm 0.2 \pm 1.0 \end{array}$

Summary

- First Evidence (4.1 σ) for the Suppressed Decay: B⁻ \rightarrow DK⁻ with D \rightarrow K⁺ π^- . We obtain the most precise R_{DK} and A_{DK} value. The ϕ_3 can be extracted later.
- New Physics not found:

 $-\mathbf{A}_{CP} \text{ of } \mathbf{D}^{0} \rightarrow \mathbf{K}_{s}^{0} \mathbf{P}^{0} (\mathbf{P}^{0} = \pi^{0}, \eta, \eta')$

- CP violation in $\tau \rightarrow K_s \pi \nu_{\tau}$ decays

Thank you~

|V_{ub}| Summary

Jeri (Belle Collaboration), La Thuile 2011 March

	Relle II Organiza	tion
Executive Board Chair : H. Aihara aihara@phys.s.u-tokyo.ac.jp	Spokesperson : Peter K	rizan
A.E.Bonder, T.Browder,	peter.kriz	ran@ijs.si
P.Chang, T.lijima, T.Muller, H.Palka, Y.Sakai, M.Sevior, C.Schwanda, E.Won C.Yuan, T.Aziz, Z.Dolezal, K.Akai D.M.Asner	Project Manager : M. Yamauch masanori.yamauc	i hi@kek.jp Chair : Y.Sakai
Physics Coordinator : B.Golob	Technical Coordinator : Y.Ushiroda	T.lijima, T.Muller, A.Schwal Soft/Computing Coordinator : T.Hara/T.Kuhr
bostjan.golob@ijs.si	ushiroda@post.kek.jp	takanori.hara@kek.jp Thomas.Kuhr@kit.edu
	PXD : H.G.Moser, C.Kiesling SVD : T.Tsuboyama, M.Friedl CDC : S.Uno PID : I.Adachi, S.Korpar, K.Inami, G.Varner ECL : A.Kuzmin, I.Nakamura KLM : K.Sumisawa, P.Pakhlov DAQ/TRG : R.Itoh, Y.Iwasaki IR : H.Nakayama	Distributed Computing : M.Sevior Data Handling System : K.Cho Database Cord Management Software Framework : R.Itoh Tracking : M.Heck Simulation tools

Jeri (Belle Collaboration), La Thuile 2011 March

#3 ϕ_3 using ADS method: B⁻ \rightarrow DK⁻ with D \rightarrow K⁺ $\pi^$ to be submitted to PRL

Model independent ϕ_3 from B⁻ \rightarrow DK⁻, D \rightarrow K_s $\pi^+\pi^-$ Dalitz

Previous analysis using 605M BB has large Dalitz model syst.

$$\phi_3 = 78.4^{\circ +10.8^{\circ}}_{-11.6^{\circ}} \pm 3.6^{\circ} (\text{syst}) \pm 8.9^{\circ} (\text{model})$$

In current analysis

- full Belle data set is used (771M)
- more sophisticated 4D fit instead of 2D (inc. cosθ_{thr} & cont. suppr. F)

• CLEO input parameters c_i & s_i are used to fit Dalitz plot:

$$M_{i}^{\pm} = h\{K_{i} + r_{B}^{2}K_{-i} + 2\sqrt{K_{i}K_{-i}}(x_{\pm}c_{i} + y_{\pm}s_{i})\}$$
$$x_{\pm} = r_{B}\cos(\delta_{B} \pm \phi_{3}) \quad y_{\pm} = r_{B}\sin(\delta_{B} \pm \phi_{3})$$

Dalitz plot binning is optimized for ϕ_3 measurement: checked using control sample of B \rightarrow D π that it gives additional ~10% improvement in x precision

Available charm samples

B-factories:

- continuum production @ Υ(4S): σ(cc) ≈ 1.3 nb
- Belle: ~ 1.3 · 10⁹ cc pairs
- Babar: ~ 0.7 · 10⁹ cc pairs

Tevatron:

- *p*p @ ~ 2 TeV
- CDF: ~ 70 · 10⁹ D⁰'s

Charm factories:

- $\psi(3770) \rightarrow D^0 \overline{D^0}, D^+ D^-$
- CLEO: $\sim 2.8 \cdot 10^6 \ D^0 \overline{D}{}^0$ pairs
- BESIII: $\sim 3.4 \cdot 10^6 D^0 \overline{D}^0$ pairs

LHC:

- o pp @ 7 TeV
- LHCb: has only started

Diverse exp. conditions!

Two source of CP asymmetries in $\tau^- \rightarrow K_s \pi^- v_{\tau}$

CP Asymmetry from <u>known physics</u> (Bigi, Sanda . 2005)

$$\frac{\Gamma(\tau^{+} \rightarrow Ks\pi^{+}v_{\tau}) - \Gamma(\tau^{-} \rightarrow Ks\pi^{-}v_{\tau})}{\Gamma(\tau^{+} \rightarrow Ks\pi^{+}v_{\tau}) + \Gamma(\tau^{-} \rightarrow Ks\pi^{-}v_{\tau})} = 3.3 \times 10^{-3}$$

- CP Asymmetry in the <u>final state distribution</u> (Kuhn, Mirkes 1993).
- Possible two Models: (1)general two Higgs doublet model (2HDM), (2)Multi-Higgs-Doublet Model (MHDM)

Jeri (Belle Collaboration), La Thuile 2011 March

$$\begin{split} & \mathsf{R}_{\mathsf{DK}}: \text{ratio of the suppressed mode to the calibration mode} \\ & \mathsf{A}_{\mathsf{DK}}: \mathsf{CP} \text{ asymmetry for the suppressed mode} \\ & \mathcal{R}_{\mathsf{DK}} \equiv \frac{\mathcal{B}(B^- \to [K^+\pi^-]_D K^-) + \mathcal{B}(B^+ \to [K^-\pi^+]_D K^+)}{\mathcal{B}(B^- \to [K^-\pi^+]_D K^-) + \mathcal{B}(B^+ \to [K^+\pi^-]_D K^+)} \\ & = r_B^2 + r_D^2 + 2r_B r_D \cos\left(\delta_B + \delta_D\right) \cos\phi_3, \quad \text{Calibration mode} \\ & \mathcal{A}_{DK} \equiv \frac{\mathcal{B}(B^- \to [K^+\pi^-]_D K^-) - \mathcal{B}(B^+ \to [K^-\pi^+]_D K^+)}{\mathcal{B}(B^- \to [K^+\pi^-]_D K^-) + \mathcal{B}(B^+ \to [K^-\pi^+]_D K^+)} \\ & = 2r_B r_D \sin\left(\delta_B + \delta_D\right) \sin\phi_3/R_{DK}. \end{split}$$

$$r_{B} = \left| \frac{A(B^{-} \to \bar{D}^{0} K^{-})}{A(B^{-} \to D^{0} K^{-})} \right| \quad \delta_{B} = \delta(B^{-} \to \bar{D}^{0} K^{-}) - \delta(B^{-} \to D^{0} K^{-})$$
$$r_{D} = \left| \frac{A(D^{0} \to K^{+} \pi^{-})}{A(\bar{D}^{0} \to K^{+} \pi^{-})} \right| \quad \delta_{D} = \delta(\bar{D}^{0} \to K^{+} \pi^{-}) - \delta(D^{0} \to K^{+} \pi^{-})$$

Motivation

- Most precise measurement of ϕ_3 at Belle is obtained from the decay $B^- \rightarrow DK^-$, $D \rightarrow K_S \pi^+ \pi^-$ as $\phi_3 = 78.4^\circ \begin{array}{c} +10.8^\circ \\ -11.6^\circ \end{array} \pm 3.6^\circ (syst) \pm 8.9^\circ (model)$ Nontrivial model uncertainties exist in the three-body D decay.
- One of model-independent method is "ADS" method. which employs $B^- \rightarrow DK^-$, $D \rightarrow K^+\pi^-$.
- No significant signal is obtained in the previous analysis, since BG from e⁺e⁻→qq (q=u,d,s,c) is large...

We introduce new technique to discriminate the signal and qq BG:

-0.1

0.5

0

NB

20

10

-0.5

0.2

0.3

0.1

∆E (GeV)