Search for the rare decays $B^0_d \rightarrow \mu^+\mu^-$ and $B_S \rightarrow \mu^+\mu^$ with LHCb

Gaia Lanfranchi LNF-INFN on behalf of the LHCb Collaboration

Les XXV Rencontres de Physique de la Vallee d'Aoste

Outline

- Brief theoretical introduction
- Experimental status
- LHCb skills for the search for rare decays $B_{s,d} \rightarrow \mu\mu$
- Analysis strategy
- Results
- Outlook

The LHCb hunt for non-SM Higgs(es)

 $B_{(d,s)} \rightarrow \mu\mu$ is the best way for LHCb to constrain the parameters of the extended Higgs sector in MSSM, fully complementary to direct searches

Double suppressed decay: FCNC process and helicity suppressed: → very small in the Standard Model but very well predicted:

$$B_s \rightarrow \mu^+ \mu^- = (3.2 \pm 0.2) \times 10^{-9}$$

 $B_d \rightarrow \mu^+ \mu^- = (1.0 \pm 0.1) \times 10^{-10}$

Buras et al., arXiv:1007.5291

→ sensitive to New Physics contributions in the scalar/pseudo-scalar sector:

$$(c_{S,P}^{MSSM})^2 \propto \left(\frac{m_b m_\mu \tan^3 \beta}{M_A^2}\right)^2$$

MSSM, large tan β approximation

The LHCb hunt for non-SM Higgs(es)

5 σ discovery contours for observing the heavy MSSM Higgs bosons H, A in the three decay channels H,A $\rightarrow \tau^+\tau^- \rightarrow$ jets (solid line), jet+ μ (dashed line), Jet+e (dotted line) assuming 30-60 fb⁻¹ collected by CMS.

3

The LHCb hunt for non-SM Higgses

LHCb calculation using F. Mahmoudi, SuperIso, arXiv: 08083144

Current experimental results

Current experimental results

$B_{s,d} \rightarrow \mu\mu @ LHCb$

LHCb skills for the search of the $B_{s,d} \rightarrow \mu\mu$:

- □ Huge cross section: $\sigma(pp \rightarrow bbX)$ @ 7 TeV ~ 300 µb
- □ Large acceptance (bb are produced forward/backward): LHCb acceptance **1.9<\eta<4.9** (CDF: $|\eta|$ <1; D0: $|\eta|$ <2)
 - $\rightarrow \epsilon$ (acceptance) for $B_{sd} \rightarrow \mu\mu \sim 10\%$
- □ Large boost: → average flight distance of B mesons ~ 1 cmA huge amount of very displaced b's.....

.... But in a harsh environment!

- σ (pp, inelastic) @ $\sqrt{s}=7$ TeV ~ 60 mb

- 80 tracks per event in 'high'-pileup conditions (~2.5 pp interactions Xing)

- only 1/200 event contains a b quark , and we are looking for $\,BR\sim 10^{-9}$

LHCb event display

8

We expect 0.7 (0.08) $B_S(B_d) \rightarrow \mu\mu$ events triggered and reconstructed in 37 pb⁻¹ if BR = BR(SM): \rightarrow Our problem is clearly the background..

Key ingredients for $B_{s,d} \rightarrow \mu\mu$

1) Efficient trigger:

- to identify leptonic final states

2) Background reduction:

- Very good mass resolution : dp/p~ 0.35% \rightarrow 0.55% for p=(5-100) GeV/c

9

- Particle identification: $\epsilon(\mu \rightarrow \mu) \sim 98\%$ for $\epsilon(h \rightarrow \mu) < 1\%$ for p>10 GeV/c
- 3) Excellent vertex & IP resolution:
 - to separate signals from background : $\sigma(IP) \sim 25~\mu m$ @ $p_T{=}2~GeV/c$

Trigger for $B_{s,d} \rightarrow \mu\mu$

- Half of the bandwidth (~1 kHz) given to the muon lines
- p_T cuts on muon lines kept very low $\rightarrow \epsilon$ (trigger $B_{sd} \rightarrow \mu\mu$) ~ 90%
- Trigger rather stable during the whole period (despite L increased by $\sim 10^5$)

Analysis strategy

• Soft selection:

- reduces the dataset to a manageable level

• Discrimination between S and B via Multi Variate Discriminant variable (GL) and Invariant Mass (IM)

- events in the sensitive region are classified in bins of a 2D plane Invariant Mass and the GL variables

• Normalization:

Convert the signal PDFs into a number of expected signal events by normalizing to channels of known BR

• Extraction of the limit:

- assign to each observed event a probability to be S+B or B-only as a function of the BR($B_{s,d} \rightarrow \mu\mu$) value; exclude (observe) the assumed BR value at a given confidence level using the **CLs binned method**.

Soft selection

Soft selection:

(pairs of opposite charged muons with high quality tracks, making a common vertex very displaced with respect to the PV and $M_{\mu\mu}$ in the range [4769-5969] MeV/c²)

1) Keeps high efficiency for signals:

After selection $B_s(B_d) \rightarrow \mu \mu$ events expected (if BR=BR(SM)): 0.3 (0.04)

3) Rejects most of the background

→ ~ 3000 background events in the large mass range [4769-5969] MeV/c²

~ 300 background events in the signal windows $M(B_{s,d}) \pm 60 \text{ MeV}$

> Signal regions blinded up to the analysis end

MuonID performance & background composition

Performance measured with pure samples of $J/\psi \rightarrow \mu\mu$, $K_s \rightarrow \pi\pi$, $\phi \rightarrow KK$, $\Lambda \rightarrow p\pi$

13

MVA: Geometrical Likelihood (GL)

Our main background is combinatorial background from two real muons:

 → reduce it by using variables related to the "geometry" of the event: (vertex, pointing, µ IPS, lifetime, mu-isolation) + p_T of the B

- MC B_{d,s}→μμ - MC bb→μμX

Geometrical Likelihood (GL)

Our main background is combinatorial background from two real muons:

 → reduce it by using variables related to the "geometry" of the event: (vertex, pointing, µ IPS, lifetime, mu-isolation) + p_T of the B

Geometrical Likelihood (MC)

Geometrical Likelihood (GL)

Measure the BR/Upper limit: the CL_s binned method

- CL_S= CL_{S+B}/CL_B = compatibility with the signal hypothesis
→ Used to compute the exclusion
- CL_B = (in)compatibility with the background hypothesis
→ Used for observation

Measure the BR/Upper limit: the CL_s binned method

Expected background in signal regions

The expected background events in signal regions are extracted from a fit of the mass sidebands divided in GL bins

Expected background in signal regions

The expected background events in signal regions are extracted from a fit of the mass sidebands divided in GL bins

Expected (observed) background events in $B_{s,d}$ mass regions

Invariant mass in GL bins

Signal Invariant Mass calibration

The B_{s,d} mass line shapes are described by Gaussian + Crystal Ball
 → parameters (μ,σ) calibrated with B→hh' and dimuon resonances

1) M(B_d), M(B_s) average values from $B_d \rightarrow K \pi$ and $B_s \rightarrow KK$ samples

Signal Invariant Mass calibration

 \rightarrow Avoid to use the PID and use only events triggered by the other b to avoid bias in the phase space [eg resolution]

19

Signal Invariant Mass calibration

CDF (D0) : $\sigma(M) \sim 24$ (120) MeV/c²

Geometrical Likelihood calibration

 $B \rightarrow$ hh' sample is also used to calibrate the GL shape with data

GL shape for signal extracted from $B \rightarrow$ hh' is flat as expected. Systematic error dominated by the fit model.

Analysis strategy

• Soft selection:

- reduces the dataset to a manageable level
- Discrimination between S and B via Multi Variate Discriminant variable (GL) and Invariant Mass (IM)

- events in the sensitive region are classified in bins of a 2D plane Invariant Mass and the GL variables

Normalization:

Convert the signal PDFs into a **number of expected signal events** by normalizing to channels of known BR:

- → selection as similar as possible with the signal to minimize systematic uncertainties.
- Extraction of the limit/measure the BR:
 - assign to each observed event a probability to be S+B or B-only as a function of the BR($B_{s,d} \rightarrow \mu\mu$) value; exclude (observe) the assumed BR value at a given confidence level

Normalization

• The signal PDFs can be translated into a number of expected signal events by normalizing to a channel with known BR

$$\mathrm{BR} = \mathrm{BR}_{\mathrm{cal}} \times \frac{\epsilon_{\mathrm{cal}}^{\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{SEL}|\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{TRIG}|\mathrm{SEL}}}{\epsilon_{\mathrm{sig}}^{\mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{SEL}|\mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{TRIG}|\mathrm{SEL}}} \times \frac{f_{\mathrm{cal}}}{f_{B_s^0}} \times \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{\mathrm{cal}}} = \alpha \times N_{B_s^0 \to \mu^+ \mu^-}$$

Three different channels used:

- BR(B⁺→J/ψ(μ⁺μ⁻) K⁺) = (5.98±0.22) 10⁻⁵
 3.7% uncertainty
 → Similar trigger and PID. Tracking efficiency (+1 track) dominates the systematic in the ratio of efficiencies. Needs f_d/f_s as input: 13% uncertainty
- 2) BR(B_s \rightarrow J/ $\psi(\mu^+\mu^-) \phi(K^+K^-)) = (3.35\pm0.9) 10^{-5}$ 26% uncertainty Similar trigger and PID. Tracking efficiency (+2 tracks) dominates the systematic
- 3) BR($B^0 \rightarrow K^+\pi^-$) = (1.94±0.06) 10⁻⁵ 3.1% uncertainty Same topology in the final state. Different trigger dominate the syst. Needs f_d/f_s 22

Normalization Factors: breakdown

$\mathrm{BR} = \underset{\epsilon_{\mathrm{sig}}}{\mathrm{BR}_{\mathrm{cal}}} \times \frac{\epsilon_{\mathrm{cal}}^{\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{SEL} \mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{TRIG} \mathrm{SEL}}}{\epsilon_{\mathrm{sig}}^{\mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{SEL} \mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{TRIG} \mathrm{SEL}}} \times \frac{f_{\mathrm{cal}}}{f_{B_s^0}} \times \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{\mathrm{cal}}} = \alpha \times N_{B_s^0 \to \mu^+ \mu^-}$							
	B	$\frac{\epsilon_{\rm norm}^{\rm REC} \epsilon_{\rm norm}^{\rm SEL \rm REC}}{\epsilon_{\rm sig}^{\rm REC} \epsilon_{\rm sig}^{\rm SEL \rm REC}}$	$ \substack{ \epsilon_{\rm norm} \\ \tau_{\rm RIG SEL} \\ \epsilon_{\rm sig} } $	$N_{ m norm}$	$\alpha_{B^0_s \to \mu^+ \mu^-}$	$\alpha_{B^0 \to \mu^+ \mu^-}$	
	$(\times 10^{-5})$		•		$(\times 10^{-9})$	$(\times 10^{-9})$	
$B^+ \rightarrow J/\psi K^+$	5.98 ± 0.22	0.49 ± 0.02	0.96 ± 0.05	12366 ± 403	8.4 ± 1.3	2.27 ± 0.18	
$B^0_s \to J/\psi \phi$	3.4 ± 0.9	0.25 ± 0.02	0.96 ± 0.05	760 ± 71	10.5 ± 2.9	2.83 ± 0.86	
$B^0 \to K^+ \pi^-$	1.94 ± 0.06	0.82 ± 0.06	0.072 ± 0.010	578 ± 74	7.3 ± 1.8	1.99 ± 0.40	

We use f_d/f_s=3.71±0.47, a recent combination of LEP+Tevatron data by HFAG, with 13% uncertainty, dominated by LEP measurements http://www.slac.stanford.edu/xorg/hfag/osc/end_2009/#FRAC

The normalization with three different channels is equivalent to perform three different analyses with different systematic uncertainties

Normalization: results

$\mathrm{BR} = \mathrm{BR}_{\mathrm{cal}} \times \frac{\epsilon_{\mathrm{cal}}^{\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{SEL} \mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{TRIG} \mathrm{SEL}}}{\epsilon_{\mathrm{sig}}^{\mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{SEL} \mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{TRIG} \mathrm{SEL}}} \times \frac{f_{\mathrm{cal}}}{f_{B_s^0}} \times \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{\mathrm{cal}}} = \alpha \times N_{B_s^0 \to \mu^+ \mu^-}$						
	B	$\frac{\epsilon_{\rm norm}^{\rm REC} \epsilon_{\rm norm}^{\rm SEL \rm REC}}{\epsilon_{\rm sig}^{\rm REC} \epsilon_{\rm sig}^{\rm SEL \rm REC}}$	$\frac{\epsilon_{\text{norm}}^{\text{TRIG SEL}}}{\epsilon_{\text{sig}}^{\text{TRIG SEL}}}$	$N_{ m norm}$	$\alpha_{B^0_s o \mu^+ \mu^-}$	$\alpha_{B^0 \to \mu^+ \mu^-}$
	$(\times 10^{-5})$				$(\times 10^{-9})$	$(\times 10^{-9})$
$B^+ \rightarrow J/\psi K^+$	5.98 ± 0.22	0.49 ± 0.02	0.96 ± 0.05	12366 ± 403	8.4 ± 1.3	2.27 ± 0.18
$B_s^0 \to J/\psi \phi$	3.4 ± 0.9	0.25 ± 0.02	0.96 ± 0.05	760 ± 71	10.5 ± 2.9	2.83 ± 0.86
$B^0 \to K^+\pi^-$	1.94 ± 0.06	0.82 ± 0.06	0.072 ± 0.010	578 ± 74	7.3 ± 1.8	1.99 ± 0.40

The three normalization channels give compatible results:

 \rightarrow Weighted average accounting for correlated systematic uncertainties

$$\alpha_{B_s^0 \to \mu^+ \mu^-} = (8.6 \pm 1.1) \times 10^{-9} + \alpha_{B^0 \to \mu^+ \mu^-} = (2.24 \pm 0.16) \times 10^{-9} + 10$$

Look inside the box....

	uu cearch	window	— Geometrical Likelihood Bins —			
	μμ scarch	WINGOW	[0, 0.25]	[0.25, 0.5]	[0.5, 0.75]	[0.75, 1]
		Exp. bkg.	$56.9^{+1.1}_{-1.1}$	$1.31\substack{+0.19 \\ -0.17}$	$0.282\substack{+0.076\\-0.065}$	$0.016\substack{+0.021\\-0.010}$
	[-60, -40]	Exp. sig. Observed	$\begin{array}{c} 0.0076\substack{+0.0034\\-0.0030}\\39\end{array}$	$0.0050^{+0.0027}_{-0.0020}$ 2	$0.0037^{+0.0015}_{-0.0011}\\1$	$0.0047\substack{+0.0015\\-0.0010}\\0$
$\overline{5}$		Exp. bkg.	$56.1^{+1.1}_{-1.1}$	$1.28^{+0.18}_{-0.17}$	$0.269\substack{+0.072\\-0.062}$	$0.015\substack{+0.020\\-0.009}$
eV/c	[-40, -20]	Exp. sig. Observed	$\begin{array}{r} 0.0220\substack{+0.0084\\-0.0079}\\55\end{array}$	$\begin{array}{c} 0.0146\substack{+0.0066\\-0.0053}\\2\end{array}$	$0.0107\substack{+0.0036\\-0.0026}$ 0	$0.0138\substack{+0.0034\\-0.0024}\\0$
N	[-20, 0]	Exp. bkg.	$55.3^{+1.1}_{-1.1}$	$1.24_{-0.16}^{+0.17}$	$0.257\substack{+0.069\\-0.059}$	$0.014\substack{+0.018\\-0.009}$
hins (Exp. sig. Observed	$\begin{array}{r} 0.038\substack{+0.015\\-0.014}\\73\end{array}$	$0.025\substack{+0.012\\-0.010}\\0$	$0.0183\substack{+0.0063\\-0.0047}\\0$	$0.0235\substack{+0.0059\\-0.0042}\\0$
S C	[0, 20]	Exp. bkg.	$54.4^{+1.1}_{-1.1}$	$1.21_{-0.16}^{+0.17}$	$0.246^{+0.066}_{-0.057}$	$0.013\substack{+0.017\\-0.008}$
Mas		Exp. sig. Observed	$\begin{array}{r} 0.03761\substack{+0.015\\-0.015}\\60\end{array}$	$0.025\substack{+0.012\\-0.010}\\0$	$0.0183\substack{+0.0063\\-0.0047}\\0$	$0.0235^{+0.0060}_{-0.0044}\\0$
ant		Exp. bkg.	$53.6^{+1.1}_{-1.0}$	$1.18\substack{+0.17 \\ -0.15}$	$0.235\substack{+0.063\\-0.054}$	$0.012\substack{+0.015\\-0.007}$
varie	[20, 40]	Exp. sig. Observed	$\begin{array}{r} 0.0220 \substack{+0.0084 \\ -0.0081 } \\ 53 \end{array}$	${\begin{array}{c} 0.0146\substack{+0.0067\\-0.0054}\\2\end{array}}$	$0.0107\substack{+0.0036\\-0.0027}\\0$	$0.0138\substack{+0.0035\\-0.0025}\\0$
In		Exp. bkg.	$52.8^{+1.0}_{-1.0}$	$1.15\substack{+0.16 \\ -0.15}$	$0.224\substack{+0.060\\-0.052}$	$0.011\substack{+0.014\\-0.007}$
	[40, 60]	Exp. sig. Observed	$\begin{array}{r} 0.0076\substack{+0.0031\\-0.0027}\\55\end{array}$	$0.0050^{+0.0025}_{-0.0019}$ 1	$0.0037^{+0.0013}_{-0.0010}\\0$	$0.0047\substack{+0.0013\\-0.0010}\\0$

$\mathbf{R} \rightarrow \mathbf{u} \mathbf{u}$ search window			Geometrical Likelihood Bins			
	μμ σται στι		[0, 0.25]	[0.25, 0.5]	[0.5, 0.75]	[0.75, 1]
		Exp. bkg.	$60.8^{+1.2}_{-1.1}$	$1.48\substack{+0.19\\-0.18}$	$0.345\substack{+0.084\\-0.073}$	$0.024\substack{+0.027\\-0.014}$
	[-60, -40]	Exp. sig. Observed	$\begin{array}{r} 0.0009\substack{+0.0004\\-0.0003}\\59\end{array}$	$0.0006^{+0.0003}_{-0.0002}$ 2	$0.0004^{+0.0002}_{-0.0001}\\0$	$0.0006^{+0.0002}_{-0.0001}$ 0
$\left(\begin{array}{c} 2 \\ 2 \end{array} \right)$		Exp. bkg.	$59.9^{+1.1}_{-1.1}$	$1.44\substack{+0.19\\-0.17}$	$0.329\substack{+0.080\\-0.070}$	$0.022\substack{+0.024\\-0.013}$
eV/c	[-40, -20]	Exp. sig. Observed	$\begin{array}{c} 0.0026\substack{+0.009\\-0.009}\\67\end{array}$	$\begin{array}{c} 0.0017\substack{+0.0008\\-0.0006}\\0\end{array}$	$0.0013\substack{+0.0004\\-0.0003}\\0$	$0.0016\substack{+0.0004\\-0.0002}\\0$
N	[-20, 0]	Exp. bkg.	$59.0^{+1.1}_{-1.1}$	$1.40^{+0.18}_{-0.17}$	$0.315\substack{+0.077\\-0.067}$	$0.020\substack{+0.022\\-0.012}$
ins (Exp. sig. Observed	$\begin{array}{r} 0.0045\substack{+0.0017\\-0.0017}\\56\end{array}$	$\begin{array}{c} 0.0030\substack{+0.0014\\-0.0011}\\2\end{array}$	$0.00219\substack{+0.00067\\-0.00054}$ 0	$0.00280^{+0.00060}_{-0.00045}$ 0
S S		Exp. bkg.	$58.1^{+1.1}_{-1.1}$	$1.36\substack{+0.18\\-0.16}$	$0.300\substack{+0.073\\-0.064}$	$0.019\substack{+0.021\\-0.011}$
Mas	[0, 20]	Exp. sig. Observed	$\begin{array}{r} 0.0045\substack{+0.0017\\-0.0017}\\60\end{array}$	$0.0030^{+0.0014}_{-0.0011}\\0$	$0.00219\substack{+0.00067\\-0.00054}$ 0	$\begin{array}{c} 0.00280\substack{+0.00060\\-0.00045}\\0\end{array}$
nt		Exp. bkg.	$57.3^{+1.1}_{-1.1}$	$1.33\substack{+0.17 \\ -0.16}$	$0.287\substack{+0.070\\-0.061}$	$0.017\substack{+0.019\\-0.010}$
ariat	[20, 40]	Exp. sig. Observed	$\begin{array}{r} 0.0026\substack{+0.0009\\-0.0009}\\42\end{array}$	$0.0017\substack{+0.0008\\-0.0006}$ 2	$0.0013\substack{+0.0004\\-0.0003}$ 1	$0.0016\substack{+0.0004\\-0.0002}$ 0
Inv		Exp. bkg.	$56.4^{+1.1}_{-1.1}$	$1.29\substack{+0.17 \\ -0.16}$	$0.274\substack{+0.067\\-0.058}$	$0.016\substack{+0.018\\-0.009}$
	[40, 60]	Exp. sig. Observed	$0.0009^{+0.0003}_{-0.0003}_{-0.0003}_{-0.0003}_{-0.0003}$	$0.0006^{+0.0003}_{-0.0002}$ 2	$0.0004\substack{+0.0001\\-0.0001}\\0$	$0.0006^{+0.0002}_{-0.0001}\\0$

Results: $B_s \rightarrow \mu \mu$ 0.7 CLs CLs vs BR(B_S→µµ) LHCb 0.6 0.5 **Expected upper limit** 0.4 68% of possible experiments compatible with expected limit Observed upper limit 0.2 90% exclusion 0.1 95% exclusion 0년 10 50 60 B(B_s⁰→μμ) [10⁻⁹] 20 30 40

		@ 90% CL	@ 95% CL
LHCb	Observed (expected), 37 pb ⁻¹	< 43 (51) x10 ⁻⁹	< 56 (65) x10 ⁻⁹
D0	World best published, 6.1 fb⁻¹ PLB 693 539 (2010)	< 42 x10 ⁻⁹	< 51 x10 ⁻⁹
CDF	Preliminary, 3.7 fb⁻¹ Note 9892	< 36 x10 ⁻⁹	< 43 x 10 -9 28

Results: $B^0_d \rightarrow \mu\mu$

		@ 90% CL	@ 95% CL
LHCb	Observed (expected) 37 pb ⁻¹	< 12 (14) x10 ⁻⁹	<15 (18) x10 ⁻⁹
CDF	World best, 2 fb ⁻¹ PRL 100 101802 (2008)	< 15 x10 ⁻⁹	< 18 x10 ⁻⁹
CDF	Preliminary, 3.7 fb⁻¹ Note 9892	< 7.6 x10 ⁻⁹	< 9.1 x 10 -9

$B_s \rightarrow \mu\mu$: LHCb reach in 2011

With the data collected in 2011 we will be able to explore the very interesting region of BR~ 10⁻⁸ and below

$B_s \rightarrow \mu\mu$: LHCb reach in 2011

With the data collected in 2011 we will be able to explore the very interesting region of BR~ 10⁻⁸ and below

$B_s \rightarrow \mu\mu$: LHCb reach in 2011

With the data collected in 2011-2012 we will be able to have a 5σ discovery if BR>10⁻⁸

Conclusions

- With only 37 pb⁻¹ LHCb has shown an amazing potential to search for New Physics in the scalar/pseudo-scalar sector.
- The LHCb results:

 $BR(B_{s} \rightarrow \mu\mu) < 43 (56) \times 10^{-9} @ 90\% (95\%) CL$ $BR(B_{d}^{0} \rightarrow \mu\mu) < 12 (15) \times 10^{-9} @ 90\% (95\%) CL$

Paper to be submitted to Phys. Lett. B

are very close to the best world limits from Tevatron with ~100 (CDF) -200 (D0) times less luminosity.

The 2011-2012 run will allow LHCb to explore the very interesting range of BR down to 5x10⁻⁹ and possibly discover New Physics. STOP

$B_s \rightarrow \mu \mu @ ATLAS/CMS$

Cut based analysis: separate signal from background by using high discriminant variables such as pointing, isolation and secondary vertex displacement:

Experiment	N sig	N bkg	90% CL limit in absence of signal
ATLAS (10 fb ⁻¹) σ (bb)=500 ub	5.6 events	14^{+13}_{-10} events (only bb $\rightarrow \mu\mu$)	
CMS (1 fb ⁻¹) σ (bb)=500 ub	2.36 events	6.53 events (2.5 bb→μμ)	< 1.6 x 10 ⁻⁸

Ratio of fragmentation fractions

We use $f_d/f_s=3.71\pm0.47$, a recent combinaton of LEP+Tevatron data by HFAG, with 13% uncertainty, dominated by LEP measurements

B species	Z ⁰ fractions [%]	Tevatron fractions [%]
B^{\pm}	$40.4{\pm}1.2$	33.3 ± 3.0
\mathbf{B}^0	$40.4{\pm}1.2$	33.3 ± 3.0
B _s	10.9±1.2	12.1 ± 1.5
$\Lambda_{ m b}$	$8.3{\pm}2.0$	21.4 ± 6.8

<u>HFAG: http://www.slac.stanford.edu/xorg/hfag/osc/end_2009/#FRAC</u> Tevatron results from PLB, 667,1 (2008)

LHCb will measure them with semileptonic decays and hadronic $B_{(s)}$ \rightarrow Dh decays *(Phys.Rev.D83, 014017 (2011)*

Normalization factors: systematic uncertainties

	ε(REC)xε(SEL)	ε(TRIG)	fd/fs	Ν	BR	total
$B^{\pm} \rightarrow J/\psi K^{\pm}$	4%	5%	13%	3%	4%	15%
$B_S \rightarrow J/\psi \varphi$	8%	5%		9%	26%(*)	28%
$B^0_d \rightarrow K\pi$	7%	14%	13%	13%	3%	23%

(*) from Belle @ Y (5S): arXiv:0905.4345

D. Karlen, Comp. Phys.12 (1998) 380

Geometrical Likelihood

- How the decorrelation is done:
- 1). Input variables \rightarrow 2) Gaussian variables

 \rightarrow In this space the correlations are more linear: easier to decorrelate

3) Decorrelation is applied and the variables are re-gaussianized

→Tranformation under signal hypothesis: $\chi^2_{\rm S}$ →Transformation under background hypothesis: $\chi^2_{\rm B}$ Discriminating variable: GL = $\chi^2_{\rm S}$ - $\chi^2_{\rm B}$ → kept flat for signal

Trigger configurations

Data samples grouped in 5 trigger categories:

- Muon lines stable for 90% of the data set
- Hadron lines: 80% of L taken with L0(h) ET>3.6 and SPD<450 /900
 - \rightarrow important for calibration/normalization channels

-	-	
	- ()	٠
		٠

1	TCK category	$L0 - \mu$	$L0 - di\mu$	L0-hadron	
		$p_T (\text{GeV}/c) / \text{nSPD}$	$p_{T1} (\text{GeV}/c) / p_{T2} (\text{GeV}/c) / \text{nSPD}$	$p_T (\text{GeV}/c) / \text{nSPD}$	integrated luminosity
	1a	1.0/ -	1.0 / 0.4 / -	2.26 / -	2.2 pb^{-1}
	1b	1.0 / 600	1.0 / 0.4 / 600	2.26 / 600	1 pb^{-1}
	2	1.4 / 900	0.56 / 0.48 / 900	2.6 / 900	$2.3 \mathrm{pb}^{-1}$
	3a	1.4 / 900	0.56 / 0.48 / 900	3.6 / 900	17.3 pb^{-1}
	3b	1.4 / 900	0.56 / 0.48 / 900	3.6 / 450	$11.9 \mathrm{pb}^{-1}$

TCK category	Hlt1SingleMuonNoIP	Hlt1TrackMuon	Hlt1TrackAllL0
	$p_T \ ({{ m GeV}/c}) \ / \ { m prescale}$	$p_T/$ IP (mm)/ IPS	$p_T \;({ m GeV}/c)\;/\;{ m IP}/\;{ m IPS}$
1a	1.35 / 1	-	-
1b	1.35 / 1	-	-
2	1.8 / 1	800 / 0.11 / 5	1450 / 0.11 / $\sqrt{50}$
3a	1.8 / 0.2 - 1	800 / 0.11 / 5	$1850 / 0.11 / \sqrt{50}$
3b	1.8 / 0.2 - 1	800 / 0.11 / 5	$1850 / 0.11 / \sqrt{50}$

HLT1:

HLT2UnbiasedB2mumu Line: 2 identified muons with mass>4.7GeV/c

Background composition: peaking background from $B \rightarrow hh'$

• The fake rate probability has been convoluted with the p-spectrum of the dominant $B \rightarrow$ hh modes. In all cases we expect <0.4 events in ± 600 MeV mass range and <0.1 events in the search window.

channel	double misID	double misID,	double misID,
	$\Delta m_{B_s^0} < 600 MeV$	$\Delta m_{B_s^0} < 60 MeV$	$\Delta m_{B^0} < 60 MeV$
$B^0 ightarrow K^+ \pi^-$	0.37 ± 0.09	< 0.02	0.14 ± 0.06
$B^0_s ightarrow K^+ K^-$	0.13 ± 0.06	0.05 ± 0.03	0.03 ± 0.03
$B^0_s ightarrow \pi^+\pi^-$	0.06 ± 0.03	< 0.01	0.06 ± 0.03

<u>The peaking background is fully negligible</u> Our dominant background is combinatorial of μμX with ~10% contamination from μ+fakes [again combinatorial].

Background from $B \rightarrow hh$ modes

B→ hh background in the sensitive region is completely negligible with respect the bb \rightarrow µµ component

Background composition

• The background after the selection is dominated by real muons (mostly $bb \rightarrow \mu\mu X$ component):

Exact knowledge of the background level in MC is not required as the background in the signal region is anyhow extracted from sidebands of the mass distribution in data

Normalization Factors: breakdown

Summary of parameters entering in the limit computation

Signal parameters		Background parameters	
Normalizations		Background $\operatorname{GL}_{\mathrm{KS}} p.d.f.$ for $B_s^0 \to \mu^+\mu^-$	
f_d/f_s	$3.71 {\pm} 0.47$	$N^{\rm bkg}, {\rm GL}_{\rm KS} {\rm bin} 1$	329.1 ± 6.4
$\alpha_{B^0_s \to \mu^+ \mu^-}$	$(8.6 \pm 1.1) \times 10^{-8}$	$N^{\rm bkg}, {\rm GL}_{\rm KS} {\rm bin} 2$	$7.4{\pm}1.0$
$\alpha_{B^0 \to \mu^+ \mu^-}$	$(2.24 \pm 0.16) \times 10^{-9}$	$N^{\rm bkg}, {\rm GL}_{\rm KS} {\rm bin} 3$	1.5 ± 0.4
Signal GL_{KS} p.d.f.		$N^{\text{bkg}}, \operatorname{GL}_{\text{KS}} \operatorname{bin} 4$	$0.08^{+0.1}_{-0.05}$
$N_{B^0_{(a)} \to h^+h^-}^{TIS}$ (total)	611 ± 76	Background GL _{KS} $p.d.f.$ for $B^0 \to \mu^+\mu^-$	
$N_{B^0}^{TIS}$, $h^{\pm h^{\pm}}$, GL bin 2	228 ± 86	$N^{\text{bkg}}, \operatorname{GL}_{\text{KS}} \operatorname{bin} 1$	351.6 ± 6.6
MTIS CL 1: 2	168 ± 38	$N^{\text{bkg}}, \text{GL}_{\text{KS}} \text{ bin } 2$	8.3 ± 1.0
$N_{B_{(s)}^{0} \to h^+h^-}^{0,0}$, GL DIN 3		$N^{\text{bkg}}, \text{GL}_{\text{KS}} \text{ bin } 3$	1.9 ± 0.4
$N_{B_{0}}^{TIS} \rightarrow h^{+}h^{-}$, GL bin 4	215 ± 23	$N^{\text{bkg}}, \text{GL}_{\text{KS}} \text{ bin } 4$	$0.12^{+0.1}_{-0.07}$
Signal Mass $p.d.f.$		Background Mass $p.d.f.$ for B^0 and B^0_s	
Mean value for B^0	5275.01 ± 0.87 MeV/ c^2	$k, \operatorname{GL}_{\mathrm{KS}} \operatorname{bin} 1$	$-(0.748 \pm 0.051)/\mathrm{GeV}/c^2$
Mean value for B_s^0	$5363.1 \pm 1.5 \text{ MeV}/c^2$	$k, \operatorname{GL}_{\mathrm{KS}}$ bin 2	$-(1.36 \pm 0.35)/{ m GeV}/c^2$
Mass resolution	$26.71 \pm 0.95 \mathrm{MeV}/c^2$	$k, \operatorname{GL}_{\mathrm{KS}}$ bin 3	$-(2.29\pm0.28)/{\rm GeV}/c^2$
Crystal Ball transition point	$\alpha = 2.11 \pm 0.05$	$k, \operatorname{GL}_{\mathrm{KS}} \operatorname{bin} 4$	$-(4.15 \pm 0.91)/\mathrm{GeV}/c^2$