

Incontri di Fisica della Alte Energie IFAE 2011 Perugia, 27-29 Aprile 2011

Heavy-ion physics: status and perspectives

Domenico Elia (INFN Bari)

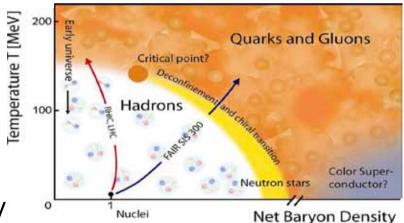
Contents

- Heavy-ion physics:
 - a bit of history, motivations
 - theoretical guidelines

- → See also talk by M. Nardi
- Heavy-ion experiments:
 - hunting the QGP
 - > SPS: discovering the new QCD medium
 - > RHIC: opening the collider era, first QGP properties
 - > LHC: first results in a new regime, ongoing programme
- Near future perspectives
- Conclusions

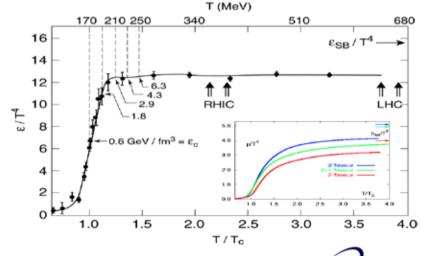
Heavy-ion physicshistory and motivation

- Experimental programmes:
 - > started in '70 to early '80 at Bevalac
 - ➤ 4 facilities with really high energy nuclear beams: BNL-AGS, CERN-SPS, BNL-RHIC, CERN-LHC
 - > energy increase by a factor 10⁴ in ~ 30 years
- Physics community:
 - joining particle and nuclear physicists
 - > started by a few dozen of physicists from a handful of countries
 - today more than 2000 physicists active worldwide
- Ultimate goal: issue of the colour confinement


Heavy-ion physics history and motivation

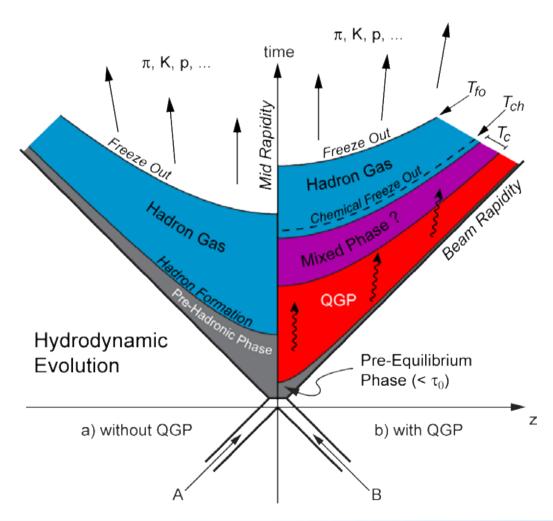
- Exploring the QCD phase diagram:
 - hadronic matter exists in different states
 - at high energy density (high temperature and/or high density) hadronic matter undergoes a phase transition to the

Quark-Gluon Plasma (QGP):


- colour confinement removed
- chiral symmetry restored
- How to create it in the lab:
 - distribute high amount of energy over large volumes (T.D. Lee '75)
 - → collisions of nuclei at very high energy

Heavy-ion physics theoretical guidelines, lattice QCD

- Phase transition to deconfined hadronic matter:
 - strong interaction sector of the SM (where it is very strong)
 - non-perturbative QCD realm
 - → heavy-ion basically a data driven field
- However:
 - impressive progress in L-QCD
 - quantitative estimations:
 - critical temperature T_c
 - critical energy density ε_c
 - order of the transition



 \rightarrow phase transition at: T_c ~ 170 MeV and ϵ_c ~ 1 GeV/fm³ ~ 5 $\epsilon_{nucleus}$

Heavy-ion experiments the nucleus-nucleus collision picture

Thermal freeze-out: momentum spectra fixed

Chemical freeze-out: particle composition fixed

Soft processes:

high cross section late decouple, indirect QGP signals

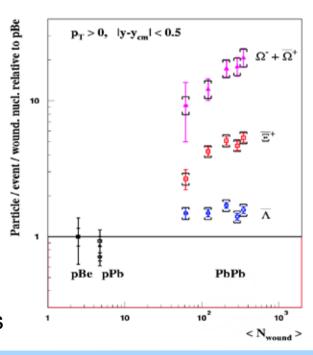
Photons (real and virtual): insensitive to the hadronization phase

Hard processes:

low cross section probe the whole evolution of the collisions

Heavy-ion experimentshunting the QGP, signatures, probes

- Experimental signatures:
 - > SPS era: golden signals proving the existence of the QGP
 - → strangeness enhancement, quarkonium suppression etc
 - > RHIC, LHC: many experimental tools at the same time
 - → probe the evolution of the collision (formation time, thermalization time, collective effects, hard probes etc)
 - → define properties of hot and dense QCD matter
- What has been done and where we are:
 - > SPS (Pb-Pb @ 17 A GeV): QGP evidence
 - > RHIC (Au-Au @ 200 A GeV): first QGP properties
 - ➤ **LHC** (Pb-Pb @ 2.76 5.5 A TeV): just started!

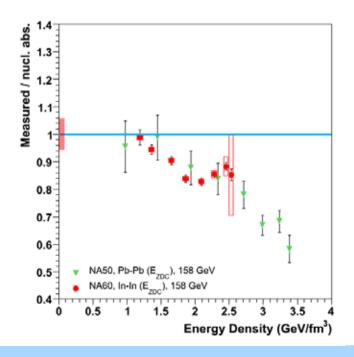

Heavy-ions @ CERN-SPS discovering the new QCD medium

- □ Programme mainly developed in the '90s:
 - fixed target Pb-Pb collisions @ 17 A GeV
 - \triangleright estimated energy density \sim 3 GeV/fm³ (> $\epsilon_c \sim$ 1 GeV/fm³)
 - two historical signatures of QGP:

Strangeness enhancement (WA97/NA57):

- chiral symmetry restoration
 - → increased production of s-sbar via gluon fusion (Rafelski, Muller, 1982)
- deconfinement, recombination
 - → stronger effect for multistrange
- Pauli blocking
 - → stronger effect for multistrange anti-baryons

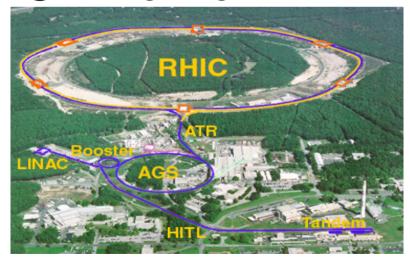
Heavy-ions @ CERN-SPS discovering the new QCD medium

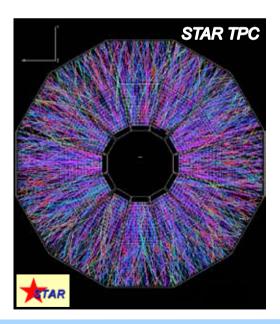

- □ Programme mainly developed in the '90s:
 - fixed target Pb-Pb collisions @ 17 A GeV
 - \triangleright estimated energy density \sim 3 GeV/fm³ (> $\epsilon_c \sim$ 1 GeV/fm³)
 - two historical signatures of QGP:

Strangeness enhancement (WA97/NA57)

J/ψ suppression (NA50/NA60)

- high colour-charge density in the QGP
 - → Debye screening (Matsui, Satz, 1986)
 - → quarkonium states may not bind

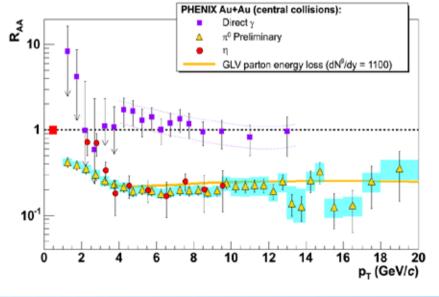

A new state of matter compatible with QGP claimed!


- Programme developed since year 2000:
 - Au-Au (and d-Au, Cu-Cu) collisions @ 200 A GeV
 - \triangleright estimated energy density \sim 5-15 GeV/fm³ (>> $\epsilon_c \sim$ 1 GeV/fm³)
 - → 4 experiments: STAR, PHENIX + PHOBOS, BRAHMS (completed)

RHIC@BNL: beginning of the collider era

Central Au-Au @ 200 GeV:

 $dN_{ch}/d\eta \sim 650$ @ y=0

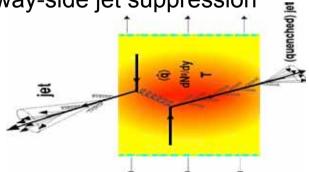


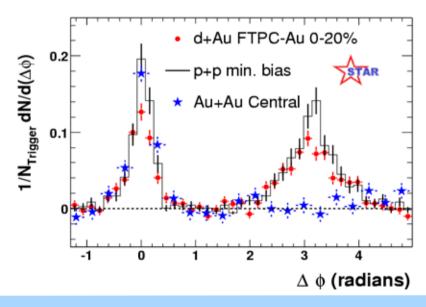
- ☐ Programme developed since year 2000:
 - Au-Au (and d-Au, Cu-Cu) collisions @ 200 A GeV
 - \triangleright estimated energy density ~ 5-15 GeV/fm³ (>> ϵ_c ~ 1 GeV/fm³)
 - ➤ 4 experiments: STAR, PHENIX + PHOBOS, BRAHMS (completed)
 - major findings:

Jet quenching:

matter opaque to high-p_t hadrons
 → nuclear modification factor R_{AA}<1

$$R_{AA} = \frac{\text{Yield}_{AA}}{\text{Yield}_{pp}} \cdot \frac{1}{\langle Nbin \rangle_{AA}}$$

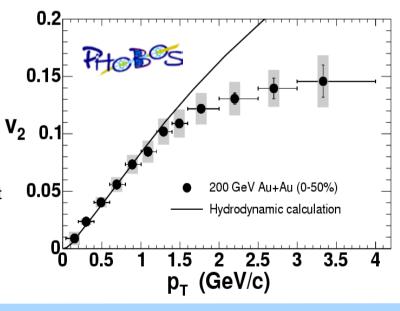




- ☐ Programme developed since year 2000:
 - Au-Au (and d-Au, Cu-Cu) collisions @ 200 A GeV
 - \triangleright estimated energy density \sim 5-15 GeV/fm³ (>> $\epsilon_c \sim$ 1 GeV/fm³)
 - ➤ 4 experiments: STAR, PHENIX + PHOBOS, BRAHMS (completed)
 - major findings:

Jet quenching:

matter opaque to high-pt hadrons
 → away-side jet suppression

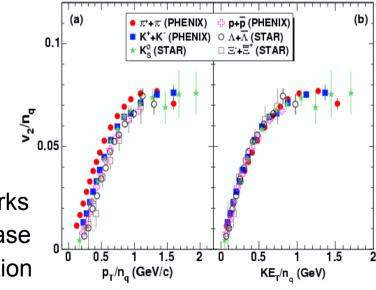

- ☐ Programme developed since year 2000:
 - Au-Au (and d-Au, Cu-Cu) collisions @ 200 A GeV
 - \triangleright estimated energy density ~ 5-15 GeV/fm³ (>> ϵ_c ~ 1 GeV/fm³)
 - ➤ 4 experiments: STAR, PHENIX + PHOBOS, BRAHMS (completed)
 - major findings:

Jet quenching

Strong collectivity:

system as an (almost) ideal liquid ?
 → v₂ in agreement with hydro at low-p_t

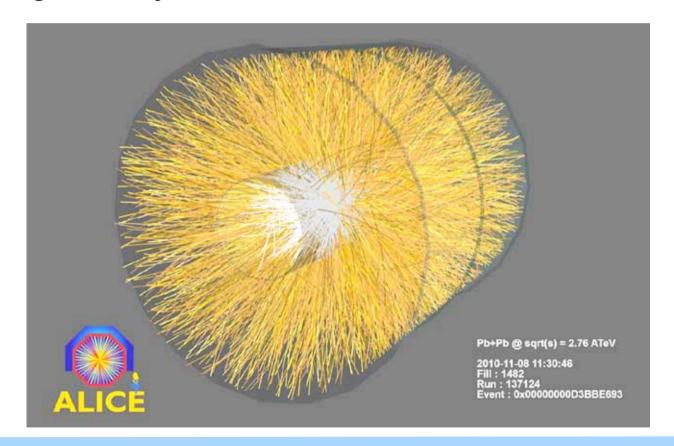
$$v_2 = \langle \cos(2\varphi) \rangle \rightarrow \text{elliptic flow coefficient}$$


- ☐ Programme developed since year 2000:
 - Au-Au (and d-Au, Cu-Cu) collisions @ 200 A GeV
 - \triangleright estimated energy density \sim 5-15 GeV/fm³ (>> $\epsilon_c \sim$ 1 GeV/fm³)
 - 4 experiments: STAR, PHENIX + PHOBOS, BRAHMS (completed)
 - major findings:

Jet quenching

Strong collectivity

Hadronization by recombination:


- v₂ scaling with the nr. of constituent quarks
 - → collective flow built in the partonic phase
 - → coalescence picture of the hadronization

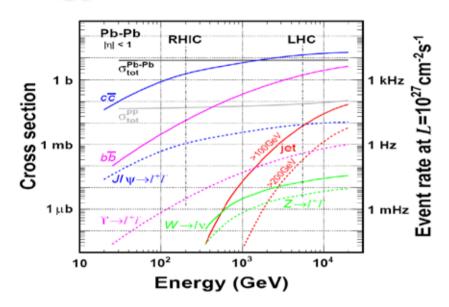
Heavy-ions @ LHC factor 15-30 jump in energy wrt RHIC

□ Programme just started in November 2010:

Heavy-ions @ LHC factor 15-30 jump in energy wrt RHIC

- □ Programme just started in November 2010:
 - > Pb-Pb collisions @ 2.76 A TeV (top will be 5.5 A TeV)
 - running time: 1 month / year (10⁶ s)
 - ightharpoonup luminosity: 2 x 10²⁵ cm⁻²s⁻¹ in 2010 (top will be 10²⁷ cm⁻²s⁻¹)
 - experiments: ALICE (HI-dedicated) + ATLAS, CMS
- What beyond RHIC:
 - new conditions for energy density/lifetime/volume available
 - higher cross sections for hard probes
 - more quantitative and systematic studies of the QGP properties
 - RHIC data interpretation testing extrapolation to LHC
 - unexpected ...

Heavy-ions @ LHC factor 15-30 jump in energy wrt RHIC



HFs and jets LHC/RHIC:

$$-\sigma_{cc} \sim x \cdot 10$$

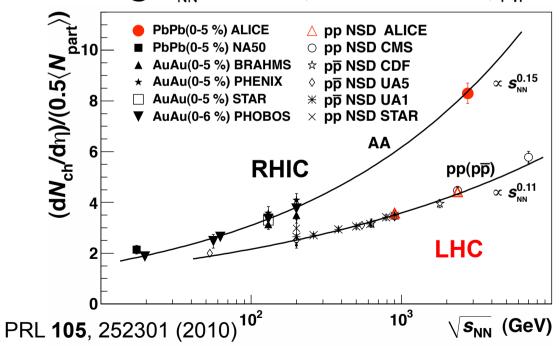
$$-\sigma_{bb}\sim x\ 100$$

-
$$\sigma_{\text{jets} > 100 \text{ GeV}}$$
 ~ ∞

■ What beyond RHIC:

- new conditions for energy density/lifetime/volume available
- higher cross sections for hard probes
- more quantitative and systematic studies of the QGP properties
- RHIC data interpretation testing extrapolation to LHC
- unexpected ...

Heavy-ions @ LHC ALICE: experimental apparatus

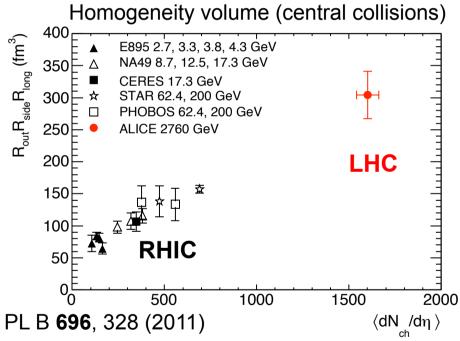


Heavy-ions @ LHC ALICE: charged-particle multiplicity

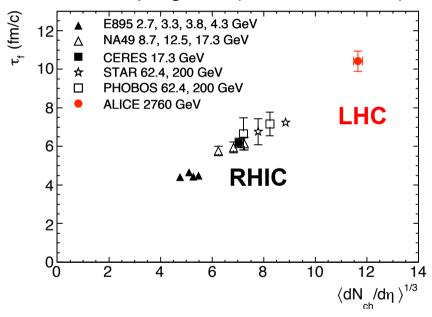
- Particle production and energy density:
 - ~ 1600 charged particles per unit rapidity

PbPb @ $\sqrt{s_{NN}}$ = 2.76 TeV, 0-5% most central, $|\eta|$ <0.5

- → highest ever achieved
- → higher than most theoretical predictions
- → 1.9 x pp @ 2.36 TeV
- → 2.2 x AuAu @ RHIC
- → energy density:


$$\varepsilon(\tau_0)_{IHC} > 3 \times \varepsilon(\tau_0)_{RHIC}$$

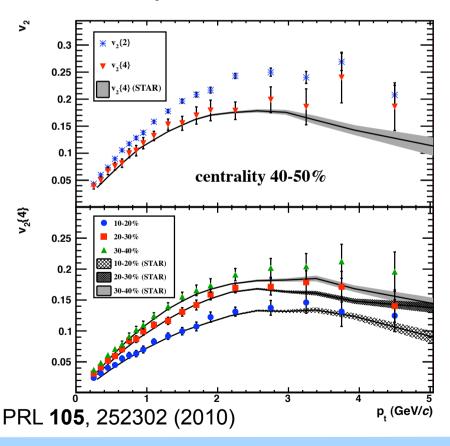
Heavy-ions @ LHC ALICE: first HBT analysis results


■ Space-time evolution of the system:

Volume at decoupling:

 $V_{LHC} \sim 300 \ fm^3 \sim 2 \ x \ V_{RHIC}$

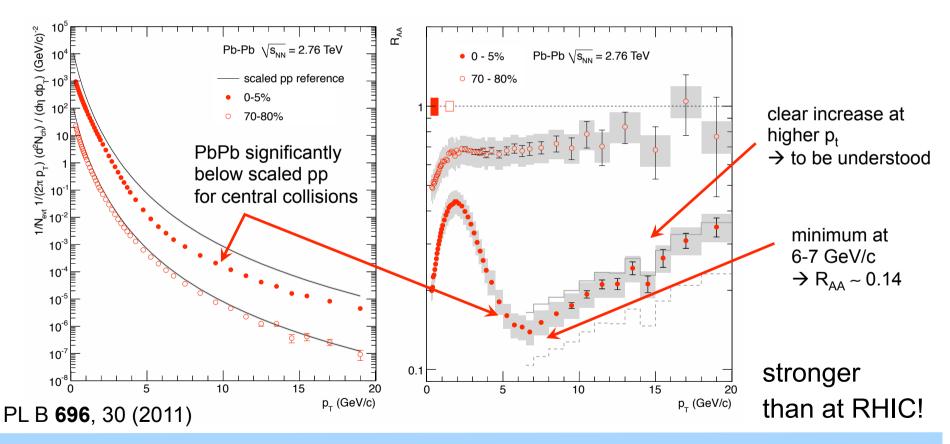
Decoupling time (central collisions)


Lifetime (from collision to freeze-out):

$$\tau_{fLHC} \sim 10\text{-}11 \text{ fm/c} \sim 1.4 \text{ x } \tau_{fRHIC}$$

Heavy-ions @ LHC ALICE: elliptic flow measurement

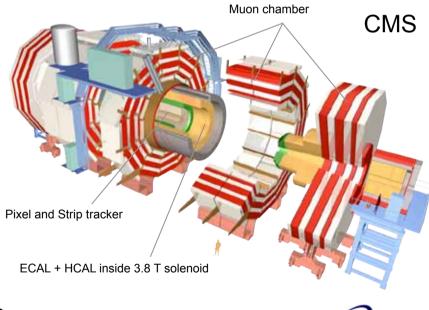
■ Elliptic flow as a function of momentum/energy:



- v₂ vs transverse momentum: almost no change with energy
 - hydro prediction confirmed (fluid with little viscosity)
 - → QGP still behaves like a liquid even at the LHC temperature!
- integrated v₂ vs energy:
 30% increase wrt RHIC
 - → stronger collectivity at LHC?
 - → radial flow in ideal hydro?
 - → can be accomodated by viscous hydro

Heavy-ions @ LHC ALICE: momentum spectra and R_{AA}


☐ Strong quenching seen in single particles @ high-p_t:

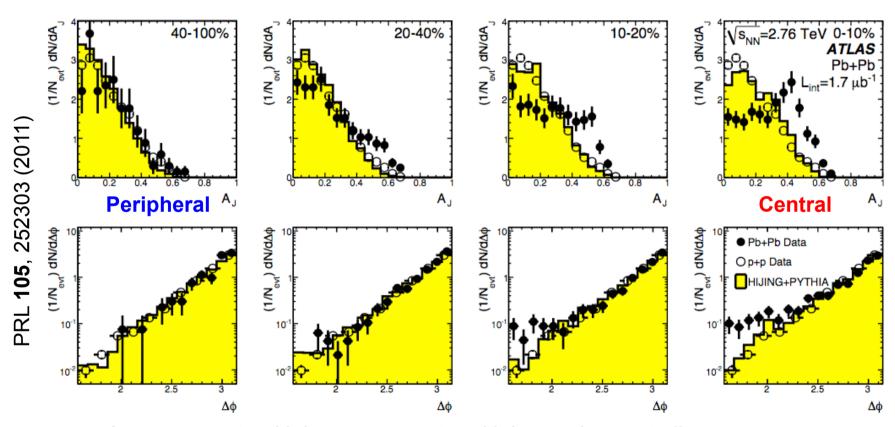


Heavy-ions @ LHC ATLAS and CMS

- Both experiments have a HI programme:
 - first exciting results on the hard probe side:
 - high E_T jets → jet quenching
 - Z⁰ boson, J/ψ signals/yields

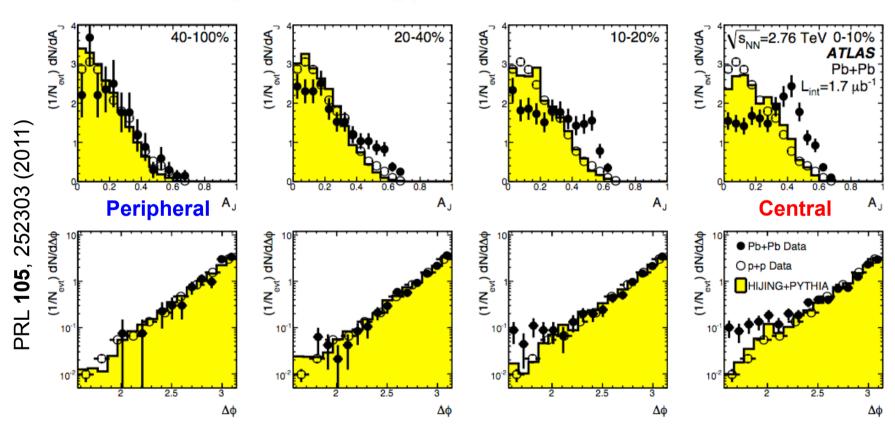
Heavy-ions @ LHC ATLAS: dijets energy imbalance

- First look al high E_⊤ jets in PbPb:
 - influence of the medium on the partons emerging from the hard scattering
 - > seen at RHIC, to be confirmed at LHC
 - event selection:
 - leading jet: E_{T1} > 100 GeV, |η| < 2.8
 - sub-leading jet: $E_{T2} > 25$ GeV, $|\eta| < 2.8$, $\Delta\Phi_{12} > \pi/2$
 - dijet energy imbalance variable:


$$A_J \equiv \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$$
 (new, not in the quenching literature)

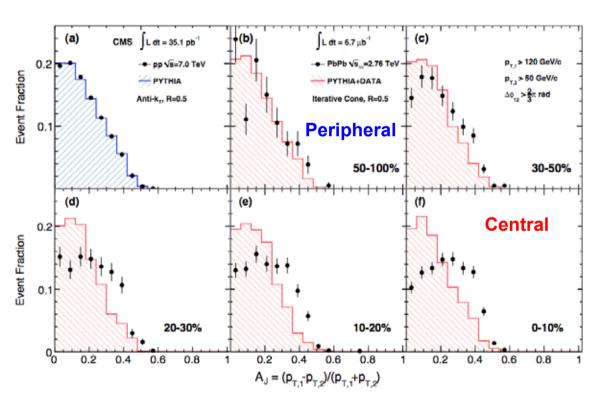
→ robust wrt "underlying event" subtraction issues

Heavy-ions @ LHC ATLAS: dijets energy imbalance

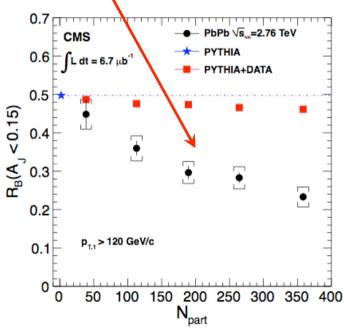


- → more events with large asymmetry with increasing centrality
- → poorly described by MC (no quenching), different from pp
- → AΦ still peaked at 180°

Heavy-ions @ LHC ATLAS: dijets energy imbalance

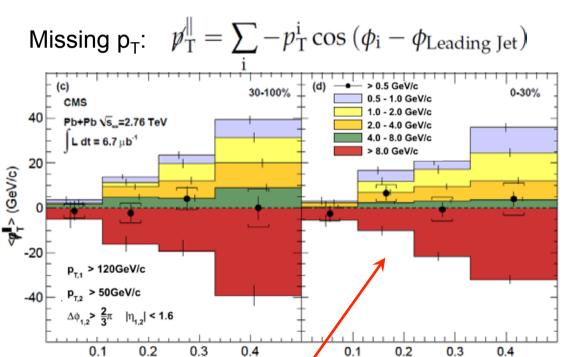

→ strong evidence for jet energy loss in the (hot and dense) nuclear medium!

Heavy-ions @ LHC CMS: dijets energy imbalance

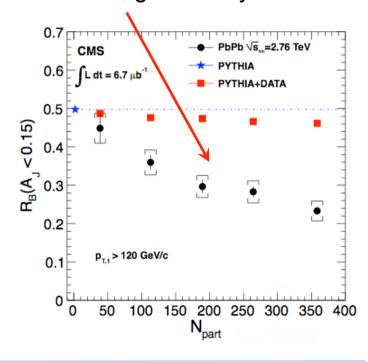


Same effect seen also by CMS:

http://arxiv.org/abs/1102.1957

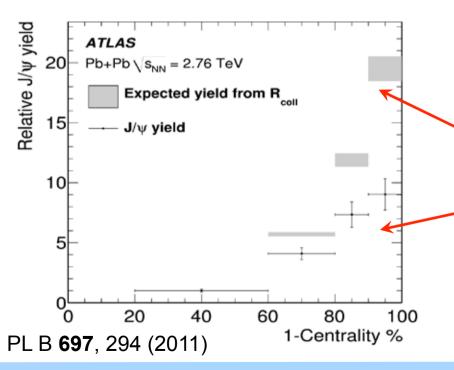

Fraction of balanced dijets: smoothly decreases with increasing centrality!

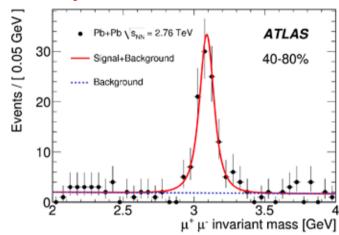
Heavy-ions @ LHC CMS: dijets energy imbalance


Checked momentum balance:

Momentum balance recovered by low- p_T tracks, especially in more central events!

http://arxiv.org/abs/1102.1957


Fraction of balanced dijets: smoothly decreases with increasing centrality!


Heavy-ions @ LHC ATLAS: J/ψ dimuon signal

- Reconstructed J/ψ signal:
 - statistics enough to investigate centrality dependence (4 bins)

See talk by C. Maiani

centrality dependence assuming scaling with the number of binary collisions

yields normalized to the most peripheral

→ Strong evidence for centrality dependent suppression of the yield (as seen by NA50/ NA60 and PHENIX) → colour screening!

Perspectives near (and medium) term future

- □ HI@LHC: we have had just a taste of
 - > only 3 weeks in a 10 year programme, the best has still to come
 - rare signals need a factor ~ 100 in integrated luminosity:
 - expected to approach design luminosity this year (~ x 20 wrt 2010)
 - quarkonia (J/ψ, Ψ', Y, Y'), heavy flavour (b,c), γ-jets, ...
 - running at full LHC energy:
 - 10-15% gain in energy density, larger cross section for rare probes
 - running p-A for comparison data:
 - distinguish QGP effects from nuclear effects ("shadowing")
 - study Color Glass Condensate
 - running lower mass ions (Ar-Ar?):
 - study volume effects
 - much higher luminosity can be achieved

Summary

- Heavy-ion physics:
 - deconfinement issue, exploring QCD in a new domain
 - the field went from the periphery to central activity of contemporary Nuclear Physics
- Experiments @ SPS and RHIC:
 - first properties of the (hot and dense) QCD medium
- Starting HI @ LHC:
 - evidence for a collectively evolving medium, living longer and expanding to a larger size than at lower energies
 - created medium is dense (jet quenching), more statistics needed for quantitative statements on hard-probe side
 - plenty of work (and exciting physics) ahead!