Neutrino Telescopes

Francesco Simeone - Roma "Sapienza"

Outlook

Cosmic Ray

Neutrino astronomy

Detection techniques

Projects

Conclusion

The Cosmic Ray (CR) Spectrum

Francesco Simeone - Roma "Sapienza"

CR Origin: the standard scenario

Astrophysical sources produce high energy hadrons

Cosmic Ray, Gamma Ray and Neutrinos

Absorption lenght of protons and gammas in the Universe

Neutrino astronomy can:

- probe the far and violent
 Universe
- disentangle between pure leptonic and hadronic acceleration models

Large Area Detectors for HE neutrinos

Underwater(ice) Cherenkov neutrino detectors

Look at upgoing muons: use the Earth as a filter Only atrmopheric and astrophysical neutrinos can cross the Earth

neutrino telescope !

Francesco Simeone - Roma "Sapienza"

Neutrino flavour identification

Tracks: •Golden channel for v_{μ} (through-going muons)

Best directional resolution, poor energy resolution (in case of not contained events).

Cascades: •All v flavour (NC) • v_e and low-E v_{τ} (CC)

Good energy resolution

Composites: •High-E v_{τ} (Double Bangs)

Good directional and energy resolution

Francesco Simeone - Roma "Sapienza"

IceCube:The first km3-scale neutrino telescope

Location: Geographic South Pole 80 strings (60 PMT each) 4800 10"PMT (only downward looking 125 m inter string distance 16 m spacing along a string Instrumented volume: ≈1 km³ Status: completed

Francesco Simeone - Roma "Sapienza"

IceCube: Full sky point source search

Preliminary results from 375.5 days exposure 36,900 events: 14,121 upgoing and 22,779 downgoing Maximum *p*-value 5.2×10^{-6} , seen in 18% of randomized sky maps

IceCube: Anisotropy

Francesco Simeone - Roma "Sapienza"

IceCube: Anisotropy

IceCube skymap is consistent with Large scale anisotropy results reported by previous experiments.

IceCube: limits to diffuse neutrino fluxes

Towards the Mediterranean km³

→ Need two telescopes (North and South Hemisphere) to cover the whole sky.
 → The Galactic Centre can be seen only from the Mediterranean telescope

Intense technological R&D and coordination of Institutes

2006-2009KM3NeT Design Study, Coordinated by Uni. Erlangen2009-2012Preparatory Phase, Coordinated by INFN

Goal: KM3NeT ~3 more sensitive than IceCube

- larger total photo-cathode area (larger detector)
- better direction resolution (sea water)

Towards the Mediterranean km³: ANTARES

Location: Toulon 12 strings (75 PMT each) 885 10"PMT (only downward looking) 65 m inter string distance 14.5 m spacing along a string Instrumented volume: ≈0.1 km³ Status: completed

Towards the Mediterranean km³: ANTARES

Francesco Simeone - Roma "Sapienza"

Towards the Mediterranean km³: NEMO

Location: Catania 1 tower (4 floors) 16 10"PMT (downward and horizontal looking) 40 m spacing between floors Successfully deployed and unfurled

KM3NeT: TDR Flexible Bar Structure

Bar Structure (INFN / IN2P3 / CEA): Evolution from the NEMO tower

3D displacement of OMs : 6 m-long storey, 6 OM/storey, 20 storeys Improve angular resolution at low energy Improve overall detector sensitivity

Unfurling from Sea bed Structure compact before sea operation Easier and faster deployment

Detector Building Block 154 Detection Units @ 180 m

KM3NeT: TDR Slender String

1D displacement of OMs : 670 m, 20 storeys, 20 OM Reduce connections (1 connector per OM) Multi PMT optical module used

Unfurling from Sea bed

Multi PMT OM (31 x 4" PMTs)

Detector Building Block 310 Detection Units @ 130 m

KM3NeT: Expected physics performances

Francesco Simeone - Roma "Sapienza"

Conclusions

Clear science goal

Neutrinos are optimal probes to study far and violent Universe and identify the CR sources

IceCube

•IceCube completed, Deep Core (6 strings) installed •First results from AMANDA, IC-22 and IC-40 published.

ANTARES

•Detector Completed and taking data, Maintenance (recovery, substitution) proven. •Data analysis for the full detector is starting.

NEMO

Phase 1 completed: Deep sea technology (mechanics, electronics, ...) fully tested
Bar structure physics performances demonstrated by the results of Phase 1 and KM3NeT MC

KM3NeT

Scientific objectives fully met with 2 Detector Building Blocks (either 610 string or 308 towers)
TDR (April 2010): common technology platform
Final Prototypes and tests (2010-2011). Site decision (end of 2011)

Beyond the optical Cherenkov detectors

Novel techniques under test for GZK neutrino search: Radio-Cherenkov (ice) and Acoustic (water)

Backup slides

Francesco Simeone - Roma "Sapienza"

Event rates

- Low noise rates: 280Hz (SPE/sec)
- Noise is dominated by glass (housing and PMT)

Supernova explosion detection is possible (Cherenkov light form intense MeV neutrino flux)

- High duty cycle: >90%
- Event rates (40 strings)
 - Muons: ~1kHz
 - Neutrinos: ~100 / day

Strings	Year	Livetime	µ rate	v rate
IC9	2006	137 days	80 Hz	1.7 / day
IC22	2007	275 days	550 Hz	28 / day
IC40	2008	~365 days	1000 Hz	110 / day
IC80*	2011	~365 days	1650 Hz	220 / day

Adapted from A.Karle, 2009

Francesco Simeone - Roma "Sapienza"

IceCube: Angular Resolution

Icecube angular resolution evaluated with thesurface shower array IceTop.IC-22 : 1.5°| IC-40 : <1.0°</td>| IC-80 : <0.5°</td>

IceCube: All-sky muon flux (IC22,2009)

IceCube-22 Data vs. Monte Carlo Simulation Data

Ice optical properties

Absorption length is about 100 m Scattering length is few cm (effective is few metres)

Water Optical properties

Francesco Simeone - Roma "Sapienza"

Acoustic and e.m. waves paropagation in water and ice

Optically pure seawater Capo Passero 2850-3250 m Toulon 1850-2250 m **Capo Passero Test 3 Toulon Test 3** 450 500 550 600 650 750 700 wavelength (nm)

Francesco Simeone - Roma "Sapienza"

IceCube: WIMPs Detection

WIMPs gravitationally trapped via elastic collisions in the Sun.

Expected # of events: few to O(1000) per year

Effective Neutrino Area (m²)

10-4

10-5

10⁻⁶

Francesco Simeone - Roma "Sapienza"

ANTARES: WIMPs detection

Francesco Simeone - Roma "Sapienza"

KM3NeT: Time schedule

Accelerator experiments: results and open questions

Brookhaven NL (Harvard, SLAC) 1979

200 MeV proton beam (LINAC) Spill time 3 to 20 μ s Beam diameter 4.5 cm Energy deposited in water $10^{19} \rightarrow 10^{21}$ eV Bipolar pulses observed Dependency on C_p, T and on beam diameter confirmed (10% uncertainty)

Recent measurements (2000's)

Uppsala: 177 MeV p E= 10¹⁶ – 10^{17.5} eV Bipolar pulse observed Unclear dependence on temperature Other contibution to observed pulses ?

ITEP Synchrotron: 100, 200 MeV p E= $10^{15} - 10^{20}$ eV Measured pressure increses linearly with E

Erlangen Laser Nd-YaG E= 10¹⁷ – 10¹⁹ eV ²⁰ Dependence on C_p ¹⁵ confirmed ¹⁰

A well calibrated shower energy vs. acoustic amplitude relation is still missing

Coherent sound emission: angular dependency

Based on the Learned paper 1979

The simultaneous sound production along the shower results in a coherent emission in the plane perpendicular to the shower axis. The "pancake" is very collimated and the pulse changes as a function of angle both in amplitude and shape.

Acoustic detection in ANTARES: AMADEUS

AMADEUS comprises a series of hydrophones on two ANTARES lines A test bench to study the feasibility of a large acoustic UHE neutrino detector Study of acoustic environment and backgrounds Study of methods to reconstruct event direction

Francesco Simeone - Roma "Sapienza"

Acoustic detectors expected sensitivity

Standard approach

Largely spaced detectors for GZK neutrino detection

1500 km³, 200 hydros per km³ 5 years threshold 5 mPa

Calculation from ACORNE (Sheffield)

1100 hydros in 1 km³

1 year, threshold 35 mPa

Just a raw idea: possible neutrino event calorimetry ?

Acoustic system triggered by KM3NeT to reduce acoustic background (time and direction)

Acoustic Pulse: Interaction vertex Muon Range → total muon energy

Neutrino

vertex

KM3NeT

Cherenkov Light: Muon direction Muon energy loss in the detector

Francesco Simeone - Roma "Sapienza"

Acoustic Wave