La fisica dello spin a COMPASS

Federica Sozzi INFN Sezione di Trieste

Incontri di fisica delle alte energie

Perugia 27-29 aprile 2011

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Esperimento a bersaglio fisso al SPS del CERN

In presa dati dal 2002:

Fisica dello spin \rightarrow fasci di muoni su bersagli polarizzati: deuterio (⁶LID) 2002-2004, 2006 protone (NH₃) 2007, 2010 - 2011 Spettroscopia adronica: fascio di adroni 2008 - 2009

Lo struttura di spin del nucleone

Com'e` distribuito lo spin del nucleone tra i suoi costituenti? Idea iniziale, nel contesto del modello a partoni: Io spin del nucleone e` la somma del contributo dei quark leggeri

 $\Delta \Sigma = (\Delta \mathbf{u} + \Delta \overline{\mathbf{u}}) + (\Delta \mathbf{d} + \Delta \overline{\mathbf{d}}) + (\Delta \mathbf{s} + \Delta \overline{\mathbf{s}})$

Lo struttura di spin del nucleone

La prima misura di $\Delta\Sigma$:

EMC al CERN: esperimento DIS con fascio e bersaglio polarizzati longitudinalmente

Osservabili: asimmetrie ottenute confrontando sezione d'urto con polarizzazioni del fascio e bersaglio parallele e antiparallele da cui si accede alla funzione di struttura di spin g_1 del nucleone.

$$A_{\parallel} = \frac{d\sigma^{\stackrel{2}{\Rightarrow}} - d\sigma^{\stackrel{2}{\Rightarrow}}}{d\sigma^{\stackrel{2}{\Rightarrow}} + d\sigma^{\stackrel{2}{\Rightarrow}}} \sim D(1 + \gamma^2) \frac{g_1}{F_1}$$

 $g_1(x) = \frac{1}{2} \sum_q e_q^2 (\Delta q(x) + \Delta \overline{q}(x))$

Risultato ottenuto: $\Delta\Sigma = 0.12 \pm 0.17$ (EMC, 1988) \rightarrow contributo dei quark non basta a spiegare lo spin del nucleone:

"crisi dello spin" nel modello a partoni

Lo struttura di spin del nucleone

Grande sviluppo teorico/fenomenologico per capire e interpretare il risultato Decomposizione dello spin in cui tutti i termini hanno un'interpretazione probabilistica:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta\mathbf{G} + \mathbf{L}$$

Contributo dello spin del gluone ΔG : ΔG contribuisce a g₁ tramite "splitting" g $\rightarrow q\overline{q}$ (equazioni DGLAP); interpretazione di g₁ e` piu` complicata \rightarrow fit globali per estrazione di Δq e ΔG

Necessita` di misure dirette di ΔG :

→ Proposte di esperimenti a SLAC, CERN (COMPASS), DESY

Contributo del momento angolare orbitale di quark e gluoni L Non accessibile sperimentalmente; Recente interesse in misure di GPDs, che danno accesso al momento angolare totale di q e g

Misura diretta di ΔG : da DIS a SIDIS

Photon-

Gluon Fusion

Misura diretta tramite processi "Photon Gluon Fusion": produzione di coppie quark-antiquark, che frammentano in due getti di adroni nello stato finale

Due canali studiati a COMPASS

• stato finale con produzione di charm (q=c): $D^0 \rightarrow K\pi \in D^* \rightarrow D^0 \pi$ Statistica limitata, interpretazione teorica facile

• stato finale con uno o due adroni con alto p_T : Interpretazione difficile (MC necessario per stimare l'apporto di fondo)

Misure SIDIS per accedere a $\Delta \mathbf{q}$ e $\Delta \Sigma$

Maggiori informazioni sulle distribuzioni di elicita` tramite DIS semi-inclusivo: un adrone e' rivelato in coincidenza con il leptone diffuso

Correlazione tra l'identita' dell'adrone e il sapore del quark colpito, descritta dalle funzioni di frammentazione

Dalla misura di asimmetrie di spin ottengo informazioni su Δq :

ALO:
$$\mathbf{A_1^h} = \frac{\sum_q e_q^2 \cdot \Delta q \cdot D_q^h}{\sum_q e_q^2 \cdot q \cdot D_q^h}$$

•PDF per diversi quark e antiquark accessibili (al contrario del DIS)
•separazione in sapore → risoluzione di un sistema di equazioni (asimmetrie su diversi bersagli e per diversi tipi di adroni) in cui appaiono PDF e FF

Lo spettrometro COMPASS

Identificazione muone diffuso Rivelazione e identificazione di adroni per misure SIDIS

Due spettrometri per coprire ampio intervallo cinematico 180 mrad accettanza separazione π , K, p (da 2, 9, 17 GeV fino a ~ 50 GeV)

Fascio: µ⁺ 160 GeV/c polarizzati longitudinalmente Bersaglio a stato solido

⁶LiD p_T ~ 50% ; f ~ 0.38 NH₃ p_T ~ 90% ; f ~ 0.15

Asimmetrie inclusive

Esperimenti con diverso intervallo cinematico coperto \rightarrow importante contributo di COMPASS a piccolo x

A parita` di valore in x, il valore di Q² e' molto diverso per gli esperimenti (energia del fascio diversa) \rightarrow dipendenza debole da Q²

Misura di g₁

Dai valori delle asimmetrie \rightarrow misura di g₁

Dal primo momento di $g_1^{d}(x)$: $\Delta \Sigma = 0.33 \pm 0.03 \pm 0.05 (Q^2 = 3 \text{ GeV/c}^2)$ $\Delta s + \Delta \overline{s} = -0.08 \pm 0.01 \pm 0.02$

Misure semi-inclusive

Asimmetrie inclusive e semi-inclusive su protone da COMPASS; dati simili per deuterio

- l'intervallo coperto fino a x~0.003
- prime asimmetrie per K su p
- buon accordo con asimmetrie su π da HERMES nell'intervallo comune, nonostante diversa cinematica \rightarrow piccola dipendenza da Q² a x fisso
- buon accordo con predizioni da fit globale DSSV

Estrazione delle funzioni di elicita` per diversi sapori

Dalle asimmetrie SIDIS e DIS su p e n misurate da COMPASS→ estrazione delle distribuzioni di elicita` a LO

 Δs compatibile con zero nell'intervallo misurato, dipendenza da FF: Δs = -0.01 ± 0.01(stat) ± 0.01 (syst) @ 0.004<x<0.3
 ΔΣ in accordo con la misura inclusiva (~0.30)

IFAE Perugia 27-29 aprile 2011

Federica Sozzi

Misura di ΔG

LSS10, $\Delta G \sim + 0.32$ at Q²= 4 LSS10, $\Delta G \sim -0.33$ (node) DSSV, $\Delta G = 0.02$ at Q²=3

Valori non inclusi nei fit globali, anche se le asimmetrie di spin sono disponibili per alcuni canali.

- Misure compatibili con zero
- Intervallo coperto 0.05
 x_g<0.3
- Risultati escludono valori di ΔG maggiori di ~0.3

Conclusioni confermate anche dalle misure a RHIC

Trasversita`

A causa della natura relativistica del moto dei quark leggeri, esiste una terza PDF indipendente con interpretazione probabilistica:

Distribuzione di trasversita'

Evoluzione in Q² diversa, non dipende da ΔG

Non misurabile in DIS, ma solo in SIDIS tramite "effetto Collins": asimmetria destra/sinistra nella distribuzione di un adrone prodotto dalla frammentazione di un quark polarizzato trasversalmente → asimmetria azimutale, difficile da misurare

$$\mathbf{A}_{\text{Coll}} = \frac{\sum_{q} \mathbf{e}_{q}^{2} \cdot \boldsymbol{\Delta}_{T} \mathbf{q} \cdot \boldsymbol{\Delta}_{T}^{0} \mathbf{D}_{q}^{h}}{\sum_{q} \mathbf{e}_{q}^{2} \cdot \mathbf{q} \cdot \mathbf{D}_{q}^{h}}$$

Funzione di Frammentazione di Collins:

Descrive la correlazione tra lo spin del quark che frammenta e il momento dell'adrone prodotto

Accessibile anche in reazioni e⁺e⁻→h Belle, Babar

Asimmetrie di Collins

2005 Prime informazioni

- Asimmetrie su bersaglio di protoni diverse da zero
 - \rightarrow trasversita' e FF di Collins entrambe diverse da zero

Asimmetrie di Collins

Misure di COMPASS su p, dati 2007

• A piccolo x (intervallo non coperto da Hermes) asimmetrie compatibili con zero

 Nella zona di valenza segnale diverso da zero, di segno opposto per adroni positivi e negativi, in accordo con la misura di Hermes

→ risultato non scontato, visto il diverso intervallo cinematico coperto dai due esperimenti; dipendenza da Q2 trascurabile per l'effetto Collins

Conclusioni

Negli ultimi 10 anni un grande sforzo sperimentale ha permesso di ottenere informazioni sulla struttura dello spin del nucleone. COMPASS ha contribuito in diversi canali:

Misure di $\Delta\Sigma$ e Δ G, che risultano "piccoli" \rightarrow interesse spostato sulla terza componente dello spin Misure di DVCS: accesso a GPD e momento angolare totale dei partoni (COMPASS 2, JLab)

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

$$\begin{cases} \frac{1}{2}0.3 + 0.35 + 0.0}{\frac{1}{2}0.3 + 0.0 + 0.35} \\ \frac{1}{2}0.3 - 0.35 + 0.7 \end{cases}$$

Misure delle funzioni di elicita` per quark u, d, u, d, s

Prime informazioni sulla trasversita` e "Transverse Momentum Dependent" PDFs, nuovo campo da esplorare

Nei prossimi mesi nuove misure COMPASS dalla presa dati su p del 2010; informazioni complementari da JLAB (6 + 12 GeV) ,p-p (RHIC) e Drell-Yan (COMPASS 2, RHIC, FNAL, PANDA....)

TMD

L'effetto Collins non e` l'unica sorgente di asimmetrie azimutali in SIDIS. Tenendo conto della componente del momento dei partoni trasversa al momento dell'adrone, p_T, la descrizione della struttura adronica diviene piu` complessa e necessita di 8 "Transverse Momentum Dependent" PDF. Queste TMDs descrivono la correlazione tra momento e spin del partone e/o dell'adrone, e danno origine a diverse modulazioni nella sezione d'urto SIDIS.

nucleon polarisation

PDF di Sivers : correlazione tra p_T del partone e spin del nucleone

Asimmetrie di Sivers

Da COMPASS, misure su:

deuterio: asimmetrie compatibili con zero su tutto l'intervallo in x

protone:

piccolo segnale visto solo in π⁺ su p, ampiezza leggermente diversa rispetto alle misure di HERMES PLB 692 (2010) 240 -0.1 -0.1 10^{-2} 10^{-1} x x z positive hadrons 10^{-2} 10^{-1} x z positive hadrons 10^{-2} 10^{-1} x z positive hadrons 10^{-2} 10^{-1} z positive hadrons 10^{-2} 10^{-1} x z positive hadrons 10^{-2} 10^{-1} z z $p_{T}^{h}(GeV/c)$

 \rightarrow in questo caso diversi intervalli cinematici possono giocare un ruolo

Laboratori

Intervallo in x-Q² coperto con fasci di energia 160, 27.5 e 6 GeV

Federica Sozzi