Risultati recenti a BaBar

NFN

<u>Elisa Manoni</u> (INFN Perugia) per la collaborazione BaBar

Incontri di Fisica delle Alte Energie Perugia 27-29 Aprile 2011

INFN

Outline

D BaBar dataset

• Charm physics

- search for $D^0 \rightarrow \gamma \gamma$ and $D^0 \rightarrow \pi^0 \pi^0$ branching fraction measurement
- search for CP violation (CPv) in $D^+ \rightarrow K_s \pi^+$
- measurement of D_s decay constant
- Bottomonium spettroscopy
 - evidence for $h_B(1P)$
- Above-Y(4S) scan
 - measurements of $B_s \rightarrow Xlv$ branching fraction and B_s fraction f_s

BaBar dataset

- 530 fb⁻¹ collected by BaBar @ PeP-II during 9 years of data taking (1999-2008)
- Much more then Y(4S):
 - Y(3S) sample \approx 7 x (Belle + Cleo) samples
 - Y(2S) sample ≈ 0.5 x (Belle + Cleo) samples

sample	fb^{-1}
$\Upsilon(4S)$	430
$\Upsilon(3S)$	30.2
$\Upsilon(2S)$	14.5
Off Υ -resonance	54

- Scan above Y(4S)
 - ~ 4 fb⁻¹ collected in the \sqrt{s} range [10.54,11.20] GeV
- ...and much more than B<u>B</u>:
 - 690M $e^+e^- \rightarrow c\underline{c}$
 - 500M $e^+e^- \rightarrow \tau^+\tau^-$

Charm physics

$D^0 \rightarrow \gamma \gamma$ and $D^0 \rightarrow \pi^0 \pi^0$: motivations and analysis strategy

FCNC, GIM-suppressed charm loop diagrams

• SM dominated by LONG DISTANCE contributions (PRD 66,014009,2002)

looking for New Physics (NP) entering
 the loop

$ \begin{array}{l} \text{Mode} \\ D^0 \to \gamma \gamma \text{ (SM,VMD)} \\ D^0 \to \gamma \gamma \text{ (SM,HQ}\chi \text{PT)} \\ D^0 \to \gamma \gamma \text{ (MSSM)} \end{array} $	Value $\approx (3.5 {}^{+4.0}_{-2.6}) \times 10^{-8}$ $(1.0 \pm 0.5) \times 10^{-8}$ 6×10^{-6}	Tryb mino
Expe Mode	erimental results Value $< 2.7 \times 10^{-5}$	ICICICIICO II
$D^{\circ} \to \gamma \gamma$ $D^{0} \to \pi^{0} \pi^{0}$ $D^{0} \to K^{0}_{s} \pi^{0}$	$< 2.7 \times 10^{-6}$ $(8.0 \pm 0.8) \times 10^{-4}$ $(1.22 \pm 0.05) \times 10^{-2}$	Duck up)

• Reconstruction strategy:

INFA

- D^{*+} tag: D from $D^{*+} \rightarrow D^0 \pi^+$
- normalization channel $D^0 \rightarrow K_s \pi^0$

	$D^0 \to \gamma \gamma$	$D^0 o \pi^0 \pi^0$	
selection efficiency			
signal	15.2~%	6.1%	
normalization	12.0%	7.6%	

CPv in $D^+ \rightarrow K_s \pi^+$: motivations and analysis strategy

Look for deviation from SM prediction for CPv in charm sector

• i.e. W replaced by charged Higgs in CS-like diagram, different strong and weak phases wrt CA diagram (PLB450,405,1999)

• CP Asymmetry:
$$\mathcal{A}_{CP} = \frac{\Gamma(D^+ \to K_S \pi^+) - \Gamma(D^- \to K_S \pi^-)}{\Gamma(D^+ \to K_S \pi^+) + \Gamma(D^- \to K_S \pi^-)}$$

SM prediction : (-0.332 \pm 0.006)% (mainly K⁰-<u>K⁰</u> mixing)

• Experimental challenges:

• need high statistics and systematics effects well under control

• detector-induced asymmetry: treated as correction factor determined from control sample

• particle identification not applied: avoid bias due to different id efficiency for π^+/π^-

• yield extraction from ML fit to $K_S \pi$ invariant mass:

 $N_{sig} = (807 \pm 1) \times 10^3$

CPv in $D^+ \rightarrow K_s \pi^+$: result

hep-ex:10115477 Accepted by PRD, 469 fb⁻¹

extract \mathcal{A}_{CP} from yield asymmetry:

$$\mathcal{A} = \frac{N_{D^+} - N_{D^-}}{N_{D^+} + N_{D^-}} = \mathcal{F}(\mathcal{A}_{CP}, \mathcal{A}_{FB}, \mathcal{A}_{det})$$

forward-backward asymmetry measured together with \mathcal{A}_{CP}

• Dominant systematic uncertainties:

bias due to π/K /lepton contamination, detector induced effects in π^+ - π control sample and statistical error in \mathcal{A}_{det} efficiency map and (±0.08%)

• K⁰-<u>K⁰</u> rigeneration (±0.06%)

Result:

 $\mathcal{A}_{CP} = (-0.44 \pm 0.13_{stat} \pm 0.10_{syst})\%$

most precise CPv measurement on charm

sector reported to date

Leptonic D_s decays : motivations and analysis strategy Semileptonic Ds decays: $\Gamma(D_s \to \ell^- \nu_\ell) = \frac{G_F^2 |V_{cs}|^2 m_{D_s}}{8\pi} \left(1 - \frac{m_\ell^2}{m_{D_s}^2}\right)^2 m_\ell^2 f_{D_s}^2$

• Measure f_{Ds} and test SM predictions:

• before this measurement experiment : $f_{D_8} = 256.9 \pm 6.8$ (HFAG 2009) theory : $f_{D_8} = 248.0 \pm 2.5$ (HPQCD PRD,82,114504 2008)

• Reconstruction techinque: inclusive D_s sample

expt μ v expt τ v

HFAG expt av.

320

300

280

260

240

f_{Ds} (MeV)

Leptonic D_s decays : $D_s \rightarrow l\nu$ yields

PRD82,091103 (R),2010

469 fb⁻¹

 $D_s \rightarrow lv$ yields

INFN

0

- require ONE additional track identified as muon (electron)
- O in $D_s \rightarrow \tau \nu$ search remove $D_s \rightarrow e/\mu \nu$ events
- yield extraction by fitting m_{miss} or E_{extra} distributions

Leptonic D_s decays : results

0

Semileptonic branching fraction

Decay	Ē	Signal Yield	$\mathcal{B}(D_s^- ightarrow \ell^- ar{ u}_\ell)$
$\overline{D_s^- \to e^- \bar{\nu}_e}$	70.5%	$6.1 \pm 2.2 \pm 5.2$	$<2.3\times10^{-4}$ at 90% C.L.
$D_s^- \rightarrow \mu^- \bar{\nu}_\mu$	67.7%	275 ± 17	$(6.02 \pm 0.38 \pm 0.34) imes 10^{-3}$
$D_s^- \rightarrow \tau^- \bar{\nu}_{\tau} \ (\tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau})$	61.6%	408 ± 42	$(5.07 \pm 0.52 \pm 0.68) imes 10^{-2}$
$D_s^- \to \tau^- \bar{\nu}_\tau \ (\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau)$	59.5%	340 ± 32	$(4.91 \pm 0.47 \pm 0.54) \times 10^{-2}$

Below Y(4S): first evidence for $h_b(1P)$

- h_b search (I) : motivations and experimental technique ${}^{1}P_1$ bottomonium state, axial vector partner of P-wave $\chi_{bJ}(1P)$, expected mass :
 - $m_{hb} = 9899.87 \pm 0.27 \text{ MeV/c2}$
- study mass hyperfine splitting between ¹P₁ and ($<^{3}P_{j}>$) to test spin dependence of q<u>q</u> potential : $\Delta M_{HF} = M(^{3}P_{1})-M(^{1}P_{1})\approx 0$
- dominant decay mode: $\mathcal{B}(h_b \rightarrow \eta_b \gamma) \approx (40-50)\%$
- experimental technique for $Y(3S) \rightarrow h_b \pi^0$ search:

• Results:

N_s = (9145 ± 2804 ±1082) events → 3.0σ significance (3.2σ without syst) $m_{hb} = (9902 \pm 4 \pm 1) \text{ MeV/c}^2$ $\Delta M_{HF} = (+2 \pm 4 \pm 1) \text{ MeV/c}^2$ $\mathcal{B}(Y(3S) \rightarrow \pi^0 h_b) \ge \mathcal{B}(h_b \rightarrow \gamma \eta_b) = (3.7 \pm 1.1 \pm 0.7) \ge 10^4 \text{ (< 5.4 \le 10^4 @ 90\% CL)}$

Scanning above $Y(4S): B_s \rightarrow Xlv$

$B_s \rightarrow Xlv$ and f_s : motivations

Semileptonic Bs decays:

• measurement from Belle (unpublished results) :

 $\mathcal{B}(B_s \rightarrow X | v) = (10.2 \pm 0.8 \pm 0.9)\%$ (hep-ex:07102548, 2007)

- LHCb measure ratios of semi-exclusive decays to total inclusive: $\mathcal{B}(B_s \rightarrow (D_{s2}^*/D_{s1})Xlv) / \mathcal{B}(B_s \rightarrow Xlv)$ (Phys.Lett.B 698,14,2011)
- Exploit BaBar above-Y(4S) data: $(25.5 \pm 6.2) \times 10^3 B_s^{(*)} \underline{B}_s^{(*)}$ decays
- abundance of ϕ meson in B_s final states (wrt to B) allow to measure size of B_s component
 - $\mathcal{B}(B_s \rightarrow D_s X) \times \mathcal{B}(D_s \rightarrow \phi X) \approx 15\%$
 - $\mathcal{B}(B_d \rightarrow \phi X) \approx 3.43\%$

 \rightarrow measure $f_s = \# B_s$ produce above threshold / $\# b\underline{b}$ events

• measure $B_s \rightarrow X l v$ adding a high momentum lepton

 $N_{b\bar{b}} = R_b [f_s \varepsilon_{B_s} - (1 - f_s)\varepsilon_B]$ $N_{\phi} = R_b [f_s P(B_s \bar{B}_s \to \phi X)\varepsilon_{B_s,\phi} - (1 - f_s)P(B\bar{B} \to \phi X)\varepsilon_{B,\phi}]$ $N_{\phi,\ell} = R_b [f_s P(B_s \bar{B}_s \to \phi \ell \nu X)\varepsilon_{B_s,\phi\ell} - (1 - f_s)P(B\bar{B} \to \phi \ell \nu X)\varepsilon_{B,\phi\ell}]$ (1) (2)

- B contribution measured from Y(4S) data
- $f_s(\sqrt{s})$ extracted from (1) + (2)

• B_s contributions in (3) depend on many BF taken from PDG and on $B(Bs \rightarrow Xlv)$

$B_s \rightarrow Xlv$ and f_s : results

Continuum subtracted yields:

• Results:

• Semileptonic BF:

 $\mathcal{B}(B_s \to \ell \nu X) = (9.9^{+2.6}_{-2.1} (\text{stat})^{+1.3}_{-2.0} (\text{syst}))\%$

• fs : near Y(5S) peak consistency with on-peak results from

Belle : $f_s = (19.3 \pm 2.9)$ % (PRD76, 012002, 2007) Cleo : $f_s = (16.8 \pm 2.6)$ % (PRD75, 012002, 2007)

Preliminary

Conclusions

- BaBar data taking ended in 2008
- Data analysis still very active: > 455 published/submitted paper
 - final results on full datatset and latest reconstruction code
- Presented here some of the most recent results:
 - Charm physics

0

- $B(D^0 \rightarrow \gamma \gamma)$: factor 10 improvement wrt PDG
- CPV in $D^+ \rightarrow K_S \pi^+$: most precise CPV measurement in charm sector reported to date
- Leptonic Ds decays: exp-theory discrepancy on f_{DS} reduced
- First evidence for $h_b({}^1P_1)$ in Y(3S) $\rightarrow h_b \pi^0 @ 3\sigma$ level
- Bs semileptonic branching fraction and fs measurement with above-Y(4S)-scan : data consistent with previous results and theoretical prediction

Back-up slides

$D^0 \rightarrow \gamma \gamma$ and $D^0 \rightarrow \pi^0 \pi^0$: references

INFN

Ŷ

Theoretical predictions			
Mode	Value	Reference	
$D^0 \rightarrow \gamma \gamma \text{ (SM,VMD)}$	$\approx (3.5 + 4.0)_{-2.6} \times 10^{-8}$	Burdman [11]	
$D^0 \rightarrow \gamma \gamma \text{ (SM,HQ}\chi \text{PT)}$	$(1.0 \pm 0.5) \times 10^{-8}$	Fajfer [12]	
$D^0 \rightarrow \gamma \gamma \text{ (MSSM)}$	6×10^{-6}	Prelovsek [9]	
Experimental results			
Mode	Value	Reference	
$D^0 \rightarrow \gamma \gamma$	$< 2.7 \times 10^{-5}$	Nakamura [13]	
		Coan [10]	
$D^0 \rightarrow \pi^0 \pi^0$	$(8.0 \pm 0.8) \times 10^{-4}$	Nakamura [13]	
$D^0 \rightarrow K_s^0 \pi^0$	$(1.22 \pm 0.05) \times 10^{-2}$	Nakamura [13]	

- [9] S. Prelovsek and D. Wyler, Phys. Lett. B500, 304 (2001), hep-ph/0012116.
- [10] T. E. Coan *et al.* (CLEO), Phys. Rev. Lett. **90**, 101801 (2003), hep-ex/0212045.
- [11] G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Phys. Rev. D66, 014009 (2002), arXiv:hep-ph/0112235.
- [12] S. Fajfer, P. Singer, and J. Zupan, Phys. Rev. D64, 074008 (2001), hep-ph/0104236.
- [13] K. Nakamura *et al.* (Particle Data Group), J. Phys. G37, 075021 (2010).

Semileptonic D_s decays : inclusive yield determination and syst Inclusive D_s yield (normalization in the Ds \rightarrow lv branching fraction measurement) :

• Split reconstructed sample in

Right Sign : DKX charge= +1, (c,s) content consistent with being produced with D_s⁻

Wrong Sing : DKX charge= +1, (c,s) content NOT consistent with being produced with D_s^{-1}

- yiled depends on # of π enetring X reconstruction (n_X)
- fit 2D histogram of nX- m(DKXγ) simultaneously on WS and RS samples
 (WS shares same bkg composition as RS)

$$N_{Ds} = (67.2 \pm 1.5) \times 10^3$$
 events

Systematic	Difference in the B.F. $(\times 10^{-3})$	Difference/Nominal
WS n_X^T weights	(-0.07,+0.00)	(-1.08,+0.00)%
RS n_X^T weights	(-0.00,+0.00)	(-0.04,+0.00)%
D_s Signal Shape	(-0.09,+0.09)	(-1.45,+1.45)%
Peaking Backgrounds	(-0.10,+0.10)	(-1.64,+1.67)%
Background Model	(-0.02,+0.01)	(-0.34,+0.23)%
n_X Resolution	(-0.03,+0.03)	(-0.51,+0.48)%
Signal Photon Backgrounds	(-0.14,+0.14)	(-2.24,+2.32)%
Numerator background model	(0.14)	(2.21)%
Numerator Signal model	(0.16)	(2.56)%
Tracking E ciency	(0.05)	(0.83)%
PID E ciency	(0.12)	(1.88)%
Numerator selection criteria	(0.11)	(1.73)%
Total	(0.34)	(5.44)%

h_B search : signal yield extraction

- event selection
 - expect multi-hadronic hb final state : ntrks \geq 4, event shape cuts
- π^0 veto to reduce mis-reconstructed π^0 and γ from π^0 in the $h_b \rightarrow h_b \gamma$ sample
- cut on π^0 helicity angle to further reduce bkg from mis-reconstructed π^0
- vertex constraints: all trks from same vertex, all nautrals from IP
- recoil mass: $m_{recoil}(\pi^0) = \sqrt{(E^*_{\Upsilon(3S)} E^*_{\pi^0})^2 (p^*_{\pi^0})^2}$
- divide 9.73 < $m_{recoil}(\pi^0)$ < 10.0 GeV/c² signal region in 90 intervals of 3MeV/c²
- extract h_b yield by fitting $m_{\gamma\gamma}$
- distribution in each bin

obtain $m_{recoil}(\pi^0)$ distribution in full $m\gamma\gamma$ range

• perform χ^2 fit to extract h_b yield

