B Physics at the TeVatron

Incontri di Fisica delle Alte Energie Perugia,27-29 Aprile 2011 Michael J. Morello (for the CDF and DØ Collaborations)

Fermilab Tevatron

- pp collisions at 1.96 TeV
- 1.7MHz collision rate (396 ns bunch spacing)
- Peak luminosity $3.5-4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - Average ~ 6 pp interactions per bunch crossing.
- $\sim -8 \text{ fb}^{-1}$ "good" data on tape per experiment.
- End of operation by September 2011.

Results today on 1.6-7 fb⁻¹ of data collected.

B-Physics program

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$

 B_{s}^{0} → $\mu^{+}\mu^{-}$ and B^{0} → $\mu^{+}\mu^{-}$ are the most studied FCNC processes. CKM, GIM and helicity suppression in SM lead to:

 $BR(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = (3.2 \pm 0.2) \times 10^{-9} \quad (|V_{ts}|^{2})$ BR(B^{0} \rightarrow \mu^{+}\mu^{-}) = (1.0 \pm 0.1) \times 10^{-10} \quad (|V_{td}|^{2})

NP can enhance up to 100× MSSM: BR∝tan⁶(β). RPV SUSY enhances also at low tan(β).

Very hot! Either observation or null result provides crucial information.

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-} - Results$

World's best from 3.7 fb^{-1} BR(B⁰_s $\rightarrow \mu^{+}\mu^{-}$) < 4.3×10⁻⁸ @ 95 %CL BR(B⁰ $\rightarrow \mu^{+}\mu^{-}$) < 7.6×10⁻⁹ @ 95%CL

Most recent Presults on 6.1 fb⁻¹ BR(B⁰ $\rightarrow \mu^+\mu^-$) < 5.1×10⁻⁸ @ 95%CL

CDF Single Event Sensitivity = $3.2 \times 10^{-9} \rightarrow$ expected 1.2 SM events, 0.7 in v_{NN}>0.995 ~10*SM with 3.7 fb⁻¹. Plenty of NP models already excluded. CDF-Pub-9892, 3.7 fb⁻¹

Phys. Lett. B 693, 539 (2010), 6.1 fb⁻¹

$B_{s}^{0} \rightarrow \mu^{+}\mu^{-} - Prospect$

is working to update analysis on 7fb⁻¹ :

- 2x in statistics $(3.7 \rightarrow 7 \text{ fb}^{-1})$,
- increased muon acceptance,
- better signal efficiency from new ANN,
- more accurate background estimate.

The expected limit is: BR($B_s^0 \rightarrow \mu^+\mu^-$) < 2 × 10⁻⁸ @ 95% CL

95% CL Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

$\beta_{\rm s}$ from $B^0_{\rm s} \rightarrow J/\psi \phi$ – status

- CP violation in $B_s^0 \rightarrow J/\psi\phi$ occurs though interference of decays with and without mixing.
- SM predicts small value for the mixing phase $2\beta_s = -\phi_s$.
- New particles could enter weak mixing box diagrams and enhance CP violation
- Time evolution $(\Gamma_L, \Gamma_H, \Delta\Gamma, \beta_s)$ very sensitive to NP contributions.
- Trends are the same as in the past, both experiments now see SM consistency at about 1σ level.

CDF-Pub-10206

DONote 6098-CONF

$B_{s}^{0} \rightarrow J/\psi f_{0}(980)$

- This is a CP=+1 eigenstate
 - Unambiguous measure of lifetime $1/\Gamma_{\rm H}$
 - Clean measure B_s^0 mixing phase βs
 - $B^{0}_{s} \rightarrow J/\psi \phi \text{ requires complex angular analysis}$ for vector-vector final state
 - − Understand S-wave contributions to βs measurement in Bs→J/ψφ
- BR measurement
 - Neural Net Selection
 - Use identical selection for Bs→J/ψφ reference mode
 - Simultaneous log-likelihood fit to signal and normalization mode.

BR($B_s^0 \rightarrow J/\psi f_0(980)$)

~18 σ significant (CDF-Pub-10404):

 $\frac{BR(B_s^0 \to J/\psi f_0, f_0 \to \pi^+ \pi^-)}{BR(B_s^0 \to J/\psi \phi, \phi \to K^+ K^-)} = 0.292 \pm 0.020(stat) \pm 0.017(syst)$

 $BR(B_s^0 \to J/\psi f_0(980)) \cdot BR(f_0(980) \to \pi^+\pi^-) = (1.85 \pm 0.13 \pm 0.57) \times 10^{-4}$

- First observation from LHCb [PLB 698,115,2011.] $-\frac{BR(B_s^0 \to J/\psi f_0, f_0 \to \pi^+ \pi^-)}{BR(B_s^0 \to J/\psi \phi, \phi \to K^+ K^-)} = 0.252^{+0.046+0.027}_{-0.032-0.033}$
- Confirmed by Belle [PRL106,121802,2011]:

$$-- BR(B_s^0 \to J/\psi f_0, f_0 \to \pi^+ \pi^-) = (1.15^{+0.31+0.15+0.26}_{-0.19-0.17+0.18}) \times 10^{-4}$$

Di-muon charge asymmetry

• Search for CP Violation in mixing using same sign dimuon events from semileptonic B decays:

- N_b^{++} and N_b^{--} are the number of events with two b-hadrons decaying semileptoncally producing two same-sign muons
 - One muon comes from direct semileptonic decay $b \rightarrow \mu^- X$
 - Second muon comes from direct semileptonic decay after mixing $b \rightarrow b \rightarrow \mu^{-}X$
 - A the TeVatron, both B_s^0 and B^0 contribute.
- Lots of subtleties in the analysis, but two main experimental issues:
 - Asymmetric backgrounds from kaons faking μ
 - Asymmetric μ^+ and μ^- acceptance/efficiency

4/27/11

Di-muon charge asymmetry

• In 6 fb⁻¹ DØ measures:

 $A_{sl}^{b} = (-0.957 \pm 0.251 \pm 0.146)\%$

- SM prediction is:
 - Using prediction of a^d_{sl} and a^s_{sl} from JHEP 0706, 072 (2007)

 $A_{sl}^{b} = (-0.023_{-0.006}^{+0.005})\%$

- Differs from SM by -3.2σ
- Results from $B_s^0 \rightarrow J/\psi\phi$ consistent with dimuon asymmetry.

PRD82,032001(2010)

Di-muon charge asymmetry

• In 6 fb⁻¹ DØ measures:

 $A_{sl}^{b} = (-0.957 \pm 0.251 \pm 0.146)\%$

- SM prediction is:
 - Using prediction of a^d_{sl} and a^s_{sl} from JHEP 0706, 072 (2007)

 $A_{sl}^{b} = (-0.023_{-0.006}^{+0.005})\%$

- Differs from SM by $\sim 3.2\sigma$
- Results from $B_s^0 \rightarrow J/\psi\phi$ consistent with dimuon asymmetry.

4/27/11

What about CDF?

- CDF cannot reverse magnet polarity.
 - Probably not a major concern.
 - Dominant charge biases can be measured with data.
- DØ has better muon coverage at high $|\eta|$
- Scaling statistical uncertainty of previous CDF measurement 0.9% (CDF-Pub-9015) on 1.6 fb⁻¹, on 7 fb⁻¹ we expect ~0.3-0.4%
- The main point is the systematic uncertainty! In the meanwhile.....

Time integrated mixing probability of B mesons

Defined as: $\overline{\chi} = \frac{\Gamma(B^0 \to \overline{B}^0 \to l^+ X)}{\Gamma(B \to l^\pm X)} = f_d \cdot \chi_d + f_s \chi_s$

where the numerator includes B_d^0 and B_s^0 . It derives from the measurement of the ratio R:

$$R = \frac{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{-})}$$

Use impact parameter (d) to identify source of muons: b, c, prompt components 2D fit of impact parameter using MC templates.

 $R = 0.472 \pm 0.011 \pm 0.007 \Rightarrow \overline{\chi} = 0.126 \pm 0.008$ In agreement with LEP measurement: 0.1259 \pm 0.0042.

CDF-Pub-10335

Fit projection of impact parameter

$CPV in D^{0} \rightarrow h^{+}_{S}h^{-}_{N(D^{*+} \rightarrow D^{0}\pi^{*}_{S} \rightarrow [\pi^{i}\pi^{+}]\pi^{*}_{S}}$

- Charm is a unique because it probes up-quark sector (unaccessible through t or u quarks).
- Negligible penguin contribution the charm decays in SM
 - CPV in charm would point to NP

$$A_{CP}(D^0 \to h^+ h^-) = \frac{\Gamma(D^0 \to h^+ h^-) - \Gamma(\overline{D}^0 \to h^+ h^-)}{\Gamma(D^0 \to h^+ h^-) + \Gamma(\overline{D}^0 \to h^+ h^-)}$$

Time-integrated
$$\rightarrow A_{CP} = a_{CP}^{dir} + \frac{\langle t \rangle}{\tau} a_{CP}^{ind}$$

4/27/11

CPV in $D^0 \rightarrow h^+h^-$

- The main challenge: suppressing detector charge 0 asymmetries at the per mille level.
- Fully data driven technique using huge sample of 0 Cabibbo-favored tagged and untagged $D^0 \rightarrow K^-\pi^+$
- Basic assumption: ppbar strong interactions are 0 charge symmetric.

$$A_{CP}(D^0 \to \pi^+ \pi^-) = [+0.22 \pm 0.24 \pm 0.11]\%$$
$$A_{CP}(D^0 \to K^+ K^-) = [-0.24 \pm 0.22 \pm 0.10]\%$$

- World's best measurements. 0
 - CDF very sensitive to mixing induced effects, because of impact parameter requirements.
- Fully consistent with small CP violation. 0

CDF-Pub-10296

0.5 1.0 a^{ind}(D⁰→K⁺K⁻) [%]

1.0

-0.5

0.0

γ from B \rightarrow DK

- Study of $B \rightarrow DK$ is the cleanest way to access γ .
 - − From the interference between $b \rightarrow c$ ubar s (B⁻ →D⁰K⁻) and $b \rightarrow u$ cbar s (B⁻→antiD⁰K⁻) with the D0 and aD0 decay in the same final state.
- Several methods to extract γ .
 - No tagging or time-dependent analysis required.
- ADS method(*PRL78,3257;PRD63,036005*) uses Doubly Cabibbo Suppressed $D^0 \rightarrow K^+\pi^-$ decays.
- Simultaneous ML fit combining mass and PID estimates:
 - $N(B \rightarrow D_{DCS}K) = 34 \pm 14$
 - N(B \rightarrow D_{DCS} π)=73 ± 16
 - Significance $(D_{DCS}\pi + D_{DCS}K) > 5\sigma$

Observables: R_{ADS} and A_{ADS}

$$R_{ADS} = \frac{BR(B^{-} \to [K^{+}\pi^{-}]_{D^{0}}K^{-}) + BR(B^{+} \to [K^{-}\pi^{+}]_{D^{0}}K^{+})}{BR(B^{-} \to [K^{-}\pi^{+}]_{D^{0}}K^{-}) + BR(B^{+} \to [K^{+}\pi^{-}]_{D^{0}}K^{+})}$$
$$A_{ADS} = \frac{BR(B^{-} \to [K^{+}\pi^{-}]_{D^{0}}K^{-}) - BR(B^{+} \to [K^{-}\pi^{+}]_{D^{0}}K^{-})}{BR(B^{-} \to [K^{+}\pi^{-}]_{D^{0}}K^{-}) + BR(B^{+} \to [K^{-}\pi^{+}]_{D^{0}}K^{+})}$$

 \cap R_{ADS} and A_{ADS} are functions of γ angle.

- First measurements of these quantities at hadron collisions.
- Results in agreement and competitive with other experiments.
- Analysis on 7fb⁻¹ is in progress. $D_{DCS}K$ significance >3 σ .

See P. Garosi's talk for more details.

4/27/11

Conclusions

- TeVatron continuing to produce a rich and exciting program in heavy flavor physics.
 - Complementary to e⁺e⁻ machines and LHC experiments.
- Many interesting results will benefit from more data.
 - Anticipate ~10fb⁻¹ per experiment for analysis by the end of this year.
- Results will continue beyond the end of the Run.

Topic not covered here (or in the pipeline)

- $\cap A_{FB}(b \rightarrow s \mu \mu)$
- World's most precise lifetime measurements (e.g $\Lambda_b \rightarrow J/\psi \Lambda$)
- BR&ACP in $B \rightarrow hh$
- $\bigcirc \gamma \text{ from GLW B} \rightarrow DK$
- \cap D⁰-mixing and D⁰ \rightarrow µµ search (in general Charm Physics).
- $\bigcirc \qquad \text{More } \mathbb{B}^{0}_{s} (\mathbb{B}^{0}_{s} \rightarrow \mathbb{D}_{s}\mathbb{D}_{s} \ , \mathbb{B}^{0}_{s} \rightarrow J/\psi K_{s}, \mathbb{B}^{0}_{s} \rightarrow J/\psi K^{*}, \text{CPV in } \mathbb{B}_{s} \rightarrow \mu \mathbb{D}_{s}, \mathbb{B}^{0}_{s} \rightarrow \phi \phi, \dots)$
- Baryons (Properties, Decays, Excited states, Ω_b,)
 For instance see P.Barria's poster on Λ_b→Λ_c πππ
- \cap B_c (decays, properties)
- O Production measurements
- X(3872), Y(4140), Y(4274) ...
- ... and many others.

4/27/11

Backup

CDFII detector

- Central Drift Chamber
 - $\delta p_T / p_T \sim 0.0015 \, (GeV/c)^{-1} p_T$
- Silicon Vertex Detector
 - Silicon Vertex Trigger
- Particle identification
 dE/dX and TOF

• Good electron and muon identification by calorimeters and muon chambers.

4/27/11

DØ detector

- Excellent coverage of Tracking and Muon Systems
- Excellent calorimetry and electon ID
- 2 T Solenoid, polarity reversed weekly
- High efficiency muon trigger with muon p_T measurement at Level1 by toroids

B Physics at the Tevatron

Mechanisms for b production in ppbar collisions at 1.96 TeV:

Flavor Creation (annihilation)

- At Tevatron, large b production cross section
- Plethora of states accessible: B_{s}^{0} , B_{c} , Λ_{b}^{0} , Ξ_{b} , Σ_{b} ...
- Total σ (inelastic) at Tevatron is ~1000 larger that b cross section
 - large backgrounds suppressed by triggers that target specific decays.

4/27/11

B Triggers

J/ψ

- p_T(μ)>1.5GeV
- J/ψ mass requirement
- Opposite charge

 $B^{0} \rightarrow J/\psi K^{0*}$ $B^{+} \rightarrow J/\psi K^{+}$ $\Lambda_{b} \rightarrow J/\psi \Lambda$ $B_{c} \rightarrow J/\psi \pi$ $B_{s}^{0} \rightarrow J/\psi \phi$ Ξ_{b}, B^{**}

Dimuon

- $p_T(\mu) > 1.5 \text{ or } 2 \text{ GeV}$
- Triggers with/without charge requirement

Displaced Track

- p_T(track)>2 GeV
- IP(track)>80 or 120 μm
- Opposite charge

 $B \rightarrow \mu\mu + hadrons$ $B \rightarrow \mu\mu$ $bb \rightarrow \mu\mu$ $cc \rightarrow \mu\mu$

IFAE 2011 - M.J. Morello

 π K^{+} D_{s} K^{-} B_{s}^{0} π $B \rightarrow Dh$ $B \rightarrow hh$ $A_{b} \rightarrow ph$ $D \rightarrow hh$

 $B_{s}^{0} \rightarrow J/\psi f_{0}(980)$

- CP=+1 eigenstate
- Unambiguous measure of lifetime $1/\Gamma_{\rm H}$
- Clean measure of CP violating parameter β_s
 - $B_s \rightarrow J/\psi \phi$ requires complex angular analysis for vectorvector final state
- Understand S-wave contributions to β_s measurement in $B_s \rightarrow J/\psi \phi$

$B_{s}^{0} \rightarrow J/\psi f_{0}(980)$ - Analysis

- Start with loose selection of μμππ candidates
 - f_0 is wide, so 0.85<M(ππ)<1.2 GeV
- Neural Net Selection
- Kinematic variables, track & vertex displacement, isolation
- High-mass sideband only for background model
- Use identical selection for $Bs \rightarrow J/\psi \phi$ reference mode
- Physics backgrounds from Monte Carlo

Confirmation of $f_0(980)$

Di-pion mass distribution consistent with f_0 . Shape parameters from BES.

Helicity angles consistent with $P \rightarrow PV$ decay After efficiency correction

4/27/11

$B_s^0 \rightarrow \phi \phi$ at the TeVatron

- First measurement of BR (CDF-Pub-10064) and first measurement of polarization (CDF-Pub-10120).
 - Found large transverse polarization $(|A_{||}|^2+|A_{\perp}|^2)/|A_0|^2 = 1.9\pm0.2$ in disagreement with SM, naïvely <<1
- CP violation expected very tiny, however NP could enhance it.
- The best hard way: full tagged and time-dependent analysis, but statistics still too small.
- However Triple Products (TP) Asymmetries are expected zero in SM. NP could affect those.
- Experimentally accessed by asymmetry of distribution of two angular function u and v. Theoretical details in *Int. J. of Mod. Phys. A*, 19:2505 (2004) and arXiv:1103.2442.

$$\mathcal{A}_{\mathrm{TP}} = \frac{\Gamma(\vec{p} \cdot (\vec{\varepsilon}_1 \times \vec{\varepsilon}_2) > 0) - \Gamma(\vec{p} \cdot (\vec{\varepsilon}_1 \times \vec{\varepsilon}_2) < 0)}{\Gamma(\vec{p} \cdot (\vec{\varepsilon}_1 \times \vec{\varepsilon}_2) > 0) + \Gamma(\vec{p} \cdot (\vec{\varepsilon}_1 \times \vec{\varepsilon}_2) < 0)},$$

First measurement of CPV in $B_s^0 \rightarrow \phi \phi$

- No tagging and time-dependent analysis is required.
- Unbinned ML fit:
 - Signal asymmetry enter directly the Likelihood.
 - Backg. Asymmetry consistent with 0.

 $A_u = (-0.8 \pm 6.4 \pm 1.8)\%$ $A_v = (-12.0 \pm 6.4 \pm 1.6)\%$

• Sensitive to CP Violation both in mixing and decay.

CDF-Pub-10424

CDF Run II Preliminary L=2.9 fb⁻¹

4/27/11

$\overline{\chi}$: New CDF Measurement

- Dimuon data sample
 - 1.4 fb⁻¹
 - Use impact parameter to identify source of muons:
 b, c, prompt
 - Same technique as *bb* cross-section measurement
 - 2D fit of d_0 using templates from Monte Carlo
 - Constraints on $b, c \rightarrow K, \pi \rightarrow \mu$ also from MC
 - Much tighter selection than earlier measurements
 - Requires hit in silicon layer 1.7cm far from beam

Extracting $\overline{\chi}$

- Many sources of dimuons in bb events
 - b semileptonic decay
 - b \rightarrow c \rightarrow μ sequentials
 - $b \rightarrow \psi \rightarrow \mu$
 - Hadron fakes
- Use MC to derive wrong-charge fraction
- Result: $\chi = 0.127 \pm 0.008$
 - Includes systematic uncertainty on wrong-charge correction
 - Compare to LEP: 0.126 ±0.004

CPV in $D^0 \rightarrow h^+h^-$

- The main challenge: suppressing detector charge asymmetries at the per mille level.
- Fully data driven technique using huge sample of Cabibbo-favored tagged and untagged $D^0 \rightarrow K^-\pi^+$
- Basic assumption: ppbar strong interactions are charge symmetric.

$$A_{CP}(D^0 \to \pi^+ \pi^-) = [+0.22 \pm 0.24 \pm 0.11]\%$$

 $A_{CP}(D^0 \to K^+ K^-) = [-0.24 \pm 0.22 \pm 0.10]\%$

- World's best measurements
 - CDF very sensitive to mix because of impact parame
- Fully consistent with small (

CDF-Pub-10296

4/27/11

$B \rightarrow \mu^+ \mu^- - Strategy$

BR(B⁰_s $\rightarrow \mu^{+}\mu^{-}$) is obtained by normalizing to the number of B⁺ $\rightarrow J/\psi K^{+} \rightarrow [\mu^{+}\mu^{-}]K^{+}$ where $\mu^{+}\mu^{-}$ vertex is reconstructed in the "same" manner (similar for B⁰).

$B \rightarrow \mu^+ \mu^-$ – Selection

Selection based on following kinematics discriminating variables:

Transverse momentum of candidate $p_T^{\mu+\mu^-}$ (>4GeV) Transverse lower momentum of muon track p_T Proper decay time $\lambda = L_{3D} \times M_{\mu\mu} / |p^{\mu+\mu^-}|$ Significance of proper decay time λ/σ_{λ} (>2) 3D opening angle $\Delta \alpha$ (<0.7 rad) Isolation of B candidate I (>0.5)

