IFAE2011 Incontri di Fisica delle Alte Energie

Perugia, 27-29 Aprile

Heavy Flavour: Theoretical Predictions in the precision Era

Cecilia Tarantino Università Roma Tre **Flavour Physics:**

precision tests of the Standard Model (SM)
search for New Physics (NP)

Theoretical Approach to Weak Decays of Hadrons (including the effects of strong interactions)

 •non-perturbative QCD contributions [main source of theoretical uncertainty]

Hadronic Matrix Elements: Theoretical Tools

<Q_i>: long-distance

Non-perturbative methods

The primary role of Lattice QCD:

True theory (QCD) simulated on a finite and discrete space-time.
Physical results require continuum and infinite volume limits, and extrapolations to the physical masses.
Recent (~10 years) simulations are unquenched (N_f=2, 2+1).
Accuracy has significantly improved in the last years

Further improvements are expected thanks to increasing computational power, improved algorithms and theoretical approaches \rightarrow larger volumes, finer lattices, lower masses, N_f=2+1+1...

HEAVY FLAVOUR PHYSICS ON THE LATTICE

Collaboration	Quark action	N _f	a [fm]	(Μ _π) ^{min} [MeV]	Observables
MILC + FNAL, HPQCD,	Improved staggered	2+1	≥ 0.045	230	f _{D(s)} , D→π/K Iν, f _{B(s)} , B _{B(s)} , B→D/π Ιν
ETMC	Twisted mass	2 2+1+1	≥ 0.054	260	f _{D(s)} , D→π/K Iν, f _{B(s)}

Let's have a look at the status of the lattice results...

B-mesons decay constants f_B,f_{Bs} and B-B mixing, B_{Bd/s}

$$f_{Bs} = 238.8 \quad 9.5 \text{ MeV}$$

$$f_{B} = 192.8 \quad 9.9 \text{ MeV}$$

$$f_{Bs}/f_{B} = 1.231 \quad 0.027 \quad 2\%$$

$$f_{Bs}/f_{B} = 1.231 \quad 0.027 \quad 2\%$$

$$f_{Bs}/f_{Bs} = 1.26 \pm 0.11, \quad B_{Bs} = 1.33 \pm 0.060$$

$$f_{Bs}\sqrt{B}_{Bs} = 275 \quad 13 \text{ MeV}$$

$$f_{Bs}\sqrt{B}_{Bs} = 275 \quad 13 \text{ MeV}$$

С

Exclusive vs Inclusive V_{ub}

THEORETICALLY CLEAN

but more lattice calculations are certainly desired

$$|V_{ub}|_{excl.}$$
= (35.0 ± 4.0) 10⁻⁴

IMPORTANT LONG DISTANCE CONTRIBUTIONS.

The results have some model dependence

fit $|V_{ub}|_{SM-Fit} = (35.5 \pm 1.4) 10^{-4}$

Exclusive vs Inclusive V_{cb}

$$|V_{cb}|_{incl.}$$
= (41.7 ± 0.7) 10⁻³

$$\frac{1}{fit} |V_{cb}|_{SM-Fit} = (42.7 \pm 1.0) \ 10^{-3}$$

The role of B-physics in the UTA

The UTA within the Standard Model

The experimental constraints:

 $\epsilon_{\rm K}, \Delta m_{\rm d}, \frac{\Delta m_{\rm s}}{\Delta m_{\rm d}}, \frac{V_{\rm ub}}{V_{\rm cb}}$, Involving a b quark sin2 $\beta, \cos 2\beta, \alpha, \gamma$ (2 $\beta + \gamma$)

overconstrain the CKM parameters consistently

The UTA has established that the CKM matrix is the dominant source of flavour mixing and CP violation

From a closer look

From the UTA (excluding its exp. constraint)							
	Prediction	Measurement	Pull				
sin2β	0.771±0.036	0.654±0.026	2.6 ←				
γ	69.6°±3.1°	74°±11°	<1				
α	85.4°±3.7°	91.4°±6.1°	<1				
$ V_{cb} \cdot 10^3$	42.69±0.99	40.83±0.45	+1.6				
$ V_{ub} \cdot 10^3$	3.55±0.14	3.76±0.20	<1				
BR(B $\rightarrow \tau \nu$) · 10 ⁴	0.805±0.071	1.72±0.28	-3.2 ←				

$$BR(B \to \tau\nu) = \frac{G_F^2 m_B m_\tau^2}{8\pi} \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

•BR($B \rightarrow \tau \nu$)_{exp} prefers a large value for $|V_{ub}|$ (f_B under control and improved by the UTA) •But a shift in the central value of $|V_{ub}|$ would not solve the β tension the debate on V_{ub} (excl. vs incl, various models...) is not enough to explain all The UTA <u>beyond</u> the Standard Model

Model-independent UTA: bounds on deviations from the SM (+CKM)

From this (NP) analysis: •Parametrize generic NP in Δ F=2 processes, in all sectors $\overline{o} = 0.135 \pm 0.040$ •Use all available experimental info n=0.374±0.026 Fit simultaneously the CKM and NP parameters In good agreement with the results from the SM analysis $\sum_{u_i,u_j}^{u,c,t} \lambda_{u_i} \lambda_{u_j} \times u_i \bigvee \bigcup_{W^{\pm}}^{\vee} u_j$ $\overline{\rho} = 0.132 \pm 0.020$ $\overline{\eta} = 0.358 \pm 0.012$ NP contributions in the mixing amplitudes: $H^{\Delta F=2} = m + \frac{1}{2}\Gamma \qquad A = m_{12} = \langle M | m | \overline{M} \rangle \qquad \Gamma_{12} = \langle M | \Gamma | \overline{M} \rangle$ K mixing amplitude (2 real parameters): $\operatorname{Re} A^{\mathcal{K}} = C_{\Delta m_{\mathcal{K}}} \operatorname{Re} A^{\mathcal{SM}}_{\mathcal{K}} \quad \operatorname{Im} A_{\mathcal{K}} = C_{\mathcal{K}} \operatorname{m} A^{\mathcal{SM}}_{\mathcal{K}}$ $B_{d} \text{ and } B_{s} \text{ mixing amplitudes (2+2 real parameters):}$ $A_{q} e^{2i\phi_{q}} = C_{B_{q}} e^{2i\phi_{B}} A_{q}^{SM} e^{2i\phi_{q}^{SM}} = \left(1 + \frac{A_{q}^{NP}}{A_{q}^{SM}} e^{2i(\phi_{q}^{NP} - \phi_{q}^{SM})}\right) A_{q}^{SM} e^{2i\phi_{q}^{SM}}$

Results for the B_s mixing amplitude:

In 2009, by combining CDF and DØ results for ϕ_{Bs} :

 UTfit:
 2.9σ (update of 0803.0659)

 HFAG:
 2.2σ (0808.1297)

 CKMfitter:
 2.5σ (0810.3139)

 Tevatron B w.g.:
 2.1σ (http://tevbwg.fnal.gov)

More than 2σ deviation for every statistical approach!

In 2010, two surprising news: The 2010 CDF measurement reduces the significance of the deviation. The likelihood is not yet available. Agreement with SM at ~1o level Before it was 1.8 σ $L = 5.2 \text{ fb}^{-1}$ CDF Run II Preliminary 95% CL 0.6 The DØ measurement of $a_{\mu\mu}$ points to large β_s but 68% CL also to large $\Delta\Gamma_s$ requiring a non-standard Γ_{12} ???? SM prediction 0.4 If confirmed, two (UNLIKELY) explanations: 0.2 ΔΓ (ps⁻¹) •Huge (tree-level-like) NP contributions in Γ_{12} 0.0 (a factor 2.5: why only in Γ_{12} ??) •Bad failure of the OPE in Γ_{12} -0.2 (while in Γ_{11} (b-hadron lifetimes) works well) -0.4 -0.6 -1 0 β_s (rad)

Updated Results including NEW DØ results (new CDF results are not yet available)

$$C_{B_s} = 0.95 \pm 0.10$$

《[.78,1.16 **]** ↔ 95% **]**
 $\Phi_{B_s} = (20 \pm 8] ∪ (68 \pm 8]
([38,-6] ∪ [81,-51] ↔ 95%$

Deviation from the SM at 3.1σ

 $a_{\mu\mu} \text{ and } B_s \rightarrow J/\Psi \phi \text{ point to large} \\ \text{ but different values of } \phi_{Bs} \\ \text{(N.B. the UTA beyond the SM} \\ \text{ allows for NP in loops only,} \\ \text{i.e. tree-level NP in } Γ_{12} \text{ is not allowed)}$

Further confirmations from experiments are looked forward! (They are golden modes for theorists) **Theorist's Golden Modes (in heavy flavour)**

Suppression within the SM

 FCNCs forbidden at tree-level in the SM (radiative and rare decays:b \rightarrow (s,d) γ , b \rightarrow (s,d) *l*+*t*, b \rightarrow sv \overline{v} , B_{d,s} \rightarrow *l*+*t*,...)

 CKM-, helicity-suppression (semileptonic CP-asymmetry: A^{s}_{SL} ...,t-dep. CP-asymmetries: $A_{CP}(B \rightarrow K^{*}\gamma)$, and CP-asymmetries in D⁰-D⁰ system)

Small hadronic uncertainties

tically clean

 At most one hadron in the final state (leptonic and semileptonic decays: $B_{d,s} \rightarrow l^+ l$, $b \rightarrow (s,d) l^+ l$, $b \rightarrow sv\overline{v},...$) Smearing of bound-effects in the final state (Inclusive quantities: lifetimes, ΔM_{q} , $\Delta \Gamma_{q}/\Gamma_{q}$, A^{q}_{SL} , ϕ_{s} ,...) Suppression/cancellation of some hadronic uncertainties (clean dominant contributions, peculiar ratios/correlations: $A_{CP}(B \rightarrow J_{\Psi} K_{S}), \Delta M_{s}/\Delta M_{d},...)$

there are 1/m_b effects beyond OPE (photon conversion into light partons), which imply a 4% irreducible uncertainty)

b→sγ (exclusive)

Theoretical predictions require QCD factorization:

Br($B \rightarrow K^*\gamma$) is theoretically cleaner than Br($B \rightarrow \rho\gamma$), where O(Λ_{QCD}/m_b) corrections turn out to be relevant

Interesting exclusive observables are the t-dep. CP-asymmetries $A_{CP}(B \rightarrow V\gamma)$: •they are (helicity) suppressed within the SM ~O(1%) •their observation would be a clear signal of NP

The $\mu^+\mu^-$ modes are experimentally the best: •e⁺e⁻ is m_e²/m_µ² suppressed • $\tau^+\tau^-$ has at least other two missing v from decaying τ 's

b→(s,d) /+/	•Hig •Ma
-------------	-------------

Highly sensitive to NP (loop FCNC)
Main SM contribution from em dipole operator (Q₇^γ), and ew penguin operators (Q⁹, Q¹⁰)
Close to the charm threshold (long-distance) cc resonances appear

Inclusive:
$$B \rightarrow X_s$$
 /*/•Wilson coefficients at NNLO in QCD
[C.Bobeth et al., hep-ph/0312090,
M.Gorban, U. Haisch, hep-ph/0411071]
•HQE at $O(\Lambda^2_{acc}/m_c^2)$, $O(\Lambda^2_{acc}/m_b^2)$, $O(\Lambda^3_{acc}/m_b^3)$
•QED corrections
•bremmstrahlung effects[T.Huber at al., hep-ph/0512066]
 $Br(\bar{B} \rightarrow X_s e^+ e^-)^{SM} = (1.64 \pm 0.11) \cdot 10^{-6}$
 $Br(\bar{B} \rightarrow X_s e^+ e^-)^{SM} = (1.64 \pm 0.11) \cdot 10^{-6}$ $1 \text{ GeV}^2 < m^2_{\#} < 6 \text{ GeV}^2$ •Description
•Description
•Description•Description
•Description
•Description $1 \text{ GeV}^2 < m^2_{\#} < 6 \text{ GeV}^2$ •Description
•Description
•Description
•Description•Description
•Description
•Description $1 \text{ GeV}^2 < m^2_{\#} < 6 \text{ GeV}^2$ •Description
•Description
•Description
•Description
•Description $Description•De$

- A_{FB} and its zero q_0^2 : main source of uncertainty \rightarrow hadronic inputs
- A_I (isospin asymmetry between neutral and charged B):Small within the
- Muon to electron ratio: $R_H \equiv \int_{q_1}^{q_2} dq^2 \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} \bigg/ \int_{q_1}^{q_2} dq^2 \frac{d\Gamma(B \to He^+e^-)}{dq^2}, \quad H = \{K, K^*\}$

 $d\Gamma^2/(dq^2 dcos\theta_l) \rightarrow extraction of C_9/C_7 and C_{10}/C_7 sensitive to NP in C_{9,10}$

Inclusive: $B \rightarrow X_s \nu \bar{\nu}$	•Highly sensitive to NP (loop FCNC: Z-penguin and box dominated)
	•Theoretically very clean •It could provide the cleanest determination of V _{td} /V _{ts}

...and D-Physics...

W.r.t. B-Physics, long-distance contributions can be important. Within the OPE: the expansion parameter Λ_{QCD}/m_c is not as small as Λ_{QCD}/m_b and $\alpha_s(m_c) > \alpha_s(m_b)$

Minimal Flavour Violation (MFV): Of the SM in Flavour Physics the SM Yukawa couplings are the only building-blocks of flavour violation [G.D´Ambrosio et al., hep-ph/0207036], [A.J. Buras et al., hep-ph/0007085]

MFV models can also contain flavour blind CP-violating phases (FBPs) which make the Cⁱ complex, with significant implications for phenomenology (interplay between FBPs and the CKM phase, e.g. in Flavour Blind MSSM)

> Beyond MFV: New sources of flavour violation (V^{non-MFV}) can appear

New operators (Qimer, Qinon-MFV) can appear

DNA of Flavour Physics by Andrzej Buras (1012.1447)

Invisible NP effects

SUSY models

	AC	RVV2	AKM	δLL	FBMSSM	$SSU(5)_{\rm RN}$
$D^0 - \overline{D}^0$	***	*	*	*	*	*
ϵ_K	*	***	***	*	*	***
$S_{\psi\phi}$	***	***	***	*	*	***
$S_{\phi K_S}$	***	**	*	***	***	**
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***	*
$A_{7,8}(K^*\mu^+\mu^-)$	*	*	*	***	***	*
$B_{\rm s} \to \mu^+ \mu^-$	***	***	***	***	***	***

Non-SUSY mod

els		LHT	RSc	4G	2HDM	RHMFV
	$D^0 - \overline{D}^0$ (CPV)	***	***	**	**	
	ϵ_K	**	***	**	**	**
	$S_{\psi\phi}$	***	***	***	***	***
	$S_{\phi K_S}$	*	*	**		
	$\begin{array}{l} S_{\phi K_S} \\ A_{\rm CP} \left(B \to X_s \gamma \right) \end{array}$	*	*	** *		
	$S_{\phi K_S}$ $A_{CP} (B \rightarrow X_s \gamma)$ $A_{7,8}(K^* \mu^+ \mu^-)$	* * **	*	** * **		

Even more important are correlations

less sensitive to model parametersuseful to discriminate different models

Some examples:

We are looking forward (and getting closer to) the experimental answers!

BACKUP

A look at the future

by Vittorio Lubicz

5 V 7					
	Snper J		V.Lubicz @ Ila Mondragone onte Porzio Catono 2 - 15 November 2) e - Italy 2006	R
Hadronic matrix element	Lattice error in 2006	Lattice error in 2009	6 TFlop Year [2009]	60 TFlop Year [2011 LHCb]	1-10 PFlop Year [2015 SuperB]
$f_{+}^{K\pi}(0)$	0.9%	0.5%	0.7%	0.4%	< 0.1%
β _κ	11%	5%	5%	3%	1%
f _B	14%	5%	3 .5 - 4.5%	2.5 - 4.0%	1 - 1.5%
$f_{Bs}^{}B_{Bs}^{1/2}$	13%	5%	4 - 5%	3 - 4%	1 – 1.5%
ېر	5%	2%	3%	1.5 - 2 %	0.5 - 0.8 %
$\mathcal{F}_{B \to D/D^* l \nu}$	4%	2%	2%	1.2%	0.5%
$f_{\scriptscriptstyle +}^{B\pi},\ldots$	11%	11%	5.5 - 6.5%	4 - 5%	2-3%
$T_1^{B \rightarrow K^*/\rho}$	13%	13%			3 - 4%