

Primi risultati di fisica dei sapori pesanti a CMS Roberto Covarelli – University of Rochester

IFAE 2011 – Perugia, 27/04/2011

Heavy flavors at pp colliders

Production

- Tests of perturbative QCD
 - Heavy flavor production theories at NLO with logarithm resummation (FONLL)

Hadronization

- Fragmentation functions
- In the case of cc or bb states (low relative velocity of the bound quarks), test NRQCD approaches

Decay

- Find indirect hints of NP in rare weak decays, e.g.:
 - Non-SM CP violation in $B_s \rightarrow J/\psi\phi$
 - Probe MSSM and other 2HD models with $BR(B_s \rightarrow \mu\mu)$

Muon reconstruction and triggers

- Large rapidity coverage:
 - $|\eta| < 2.4$
- Excellent muon momentum resolution down to very low p_T:
 - matching between μ-chambers and in silicon tracker (only using the latter for momentum determination at low p_T)
 - strong solenoidal magnetic field (3.8 T)
- Triggers could be tuned to the rapidly increasing luminosity, thanks to the great versatility of the High-Level Trigger
 - Single muon triggers
 - Double muon triggers at Level-1 only
 - *Ad-hoc* intermediate solutions:
 - after a single muon is triggered, look for another track and check compatibility with a defined invariant mass region (e.g. J/ψ , Y's)
 - use single muon at HLT, but with a double muon Level-1 "seed"
 - Double muon HLT with additional requirements

26-Apr-11

Roberto Covarelli - U. Rochester

4

Muon efficiency measurements

All heavy flavor analyses use data-

driven measurements of the muon

well-identified muon ("tag")

estimate of the efficiency ε_s

efficiency ("tag-and-probe" method)

• In events with a J/ψ candidate, ask for one

• The other muon ("probe") can pass or not

pass the selection S under investigation

• Invariant mass plots separate for the two

• The fitted *N*_{pass-S}/*N*_{all} gives an unbiased

- Limitations of the method:
 - Assumes efficiency factorization: does not take into account physical correlations

cases

• Requires averaging over large bins due to limited statistics: distortion of di-muon efficiencies

MC corrections required

26-Apr-11

CMS heavy-flavor results

- Published or accepted in journals:
 - Prompt and non-prompt J/ψ differential cross-section
 - Y cross-section and $\sigma[Y(2S)] + \sigma[Y(3s)] / \sigma[Y(1S)]$ ratio
 - Production cross-section of B[±] and B^o mesons
 - Inclusive b-hadron production with muons
 - bb angular correlation based on secondary vertex reconstruction
- Preliminary:
 - $X(_{3872}) / \psi(_{2}S)$ cross-section ratio
 - Production cross-section of B_s mesons
 - Inclusive bb production with b-tagged jets
- Other studies ongoing:
 - J/ ψ polarization, χ_{cJ} production, $\Lambda_b \rightarrow J/\psi \Lambda$... and many more

J/ψ and Y cross-sections

- Double L1-trigger stream
- Signal selection based on:
 - Global muon quality
 - Muon track quality (χ^2 , n_{hits} ...)
 - Di-muon vertexing probability
 - Muon p_T (for Y only)
- Acceptance is determined using simulation in five benchmark polarization scenarios
- Muon efficiencies from tagand-probe method
- Yields from invariant mass fits

arXiv : 1011.4193, accepted by EPJC arXiv : 1012.5545, accepted by PRD

Roberto Covarelli - U. Rochester

26-Apr-11

Prompt / non-prompt J/ ψ

- In the case of J/ψ, 2-dimensional fit to invariant mass and proper decay time of the dimuon yields the fraction of J/ψ from B decays
- MPV of proper decay time is given by $l_{J/\psi} = L_{xy} m_{J/\psi} / p_T$, where

- Main systematics from:
 - Misalignment
 - Primary vertex uncertainties
 - $l_{J/\psi}$ resolution function

18 (GeV/c)

 $B \rightarrow J/\psi$, FONLL

CASCADE

CMS data

1.6 < |y_{J/w}| < 2.4

25

 $p_{\tau}^{J/\psi}$ (GeV/c)

30

J/ψ and Y cross-section results

CMS data

CASCADE

25

p_τ^{J/ψ} (GeV/c)

PYTHIA

CEM

1.6 < |y_{J/w}| < 2.4

20

L = 314 nb⁻¹ Prompt J/ψ

10²

10⁻¹

-⊔ 10-3L 30 10-3L

Non-

J/ψ

Prompt

10

15

 $\times d^2 \sigma / dp_T dy (nb/GeV/c)$ $\frac{1}{1}$ 1 0 $\frac{1}{1}$

 10^{-3}

10

10⁻² CMS.√s = 7 TeV

- $B \rightarrow J/\psi$
 - Very good agreement with FONLL theory down to low p_T
- Prompt quarkonia
 - Pythia (Leading Order / Color Singlet + Color Octet model) gives reasonable agreement in shape, not in normalization \rightarrow waiting for exact calculation including χ_c , $\psi(2S) \rightarrow J/\psi$
 - All models (including k_T factorization, Color Evaporation) underestimate J/ψ cross-section at low p_T

26-Apr-11

Inclusive $b \rightarrow \mu$

- Technique: after selecting a muon + jet signature, discriminate b from light jets using the relative transverse momentum of the muon w.r.t. the jet thrust axis
- Selection:
 - HLT muon with $p_T > 3 \text{ GeV/c}$
 - Offline $p_T > 6 \text{ GeV/c}$ and muon quality cuts from $W \rightarrow \mu v$ selection (except isolation)
 - $E_{T}(jet)$ (excluding muon) > 1 GeV
- From MC simulation:
 - Template functions for light and *b* jets
 - Muon acceptance

10

Inclusive $b \rightarrow \mu$: results

26-Apr-11

- Differential cross-sections in p_T or rapidity
- Main systematics:
 - *b* and light jets MC templates (2-20%)
 - Luminosity (11%)
- Reasonable agreement with MC@NLO within uncertainties
- Pythia failing both in shape and normalization (predicted cross-section almost double than measured)

 $\sigma(\text{pp} \rightarrow \text{b} + X \rightarrow \mu + X') = 1.32 \pm 0.01(\text{stat}) \pm 0.30(\text{syst}) \pm 0.15(\text{lumi}) \,\mu\text{b},$

 $p_{\rm T}^{\mu} > 6 \,{\rm GeV}, |\eta^{\mu}| < 2.1$

B-meson cross-sections

- Using exclusive decays $B^{\pm} \rightarrow J/\psi K^{\pm}$, $B^{o} \rightarrow J/\psi K_{s}$, $B_{s} \rightarrow J/\psi \phi$
- J/ψ selection as in previous studies
- Track selection with quality criteria plus:
 - $K^{\pm}: p_T > 0.9 \text{ GeV/c}$
 - K_s : two tracks with V^o (l_{xy} / σ_{lxy} > 5) and invariant mass requirements
- Secondary vertex fitting with all tracks and muons and P(χ²) cut
- Additional signal-background discrimination from proper decay time

arXiv : 1101.0131, PRL 106, 112001 (2011) arXiv : 1104.2892, accepted by PRL PAPER-BPH-10-013, in progress

26-Apr-11

B-meson results

- Differential cross-sections in p_T or rapidity
- Main systematics:
 - Pion/kaon tracking efficiency uncertainty (~4% per track from D° \rightarrow K3 π / D° \rightarrow K π yield ratio)
 - Luminosity (4%)
- Inclusive results confirmed:
 - Quite good agreement with MC@NLO
 - Pythia failing both in shape and normalization (here with tune "Z2", i.e. improved MPI description)

²⁶⁻Apr-11

Brand new stuff...

- Presented by CMS at the Vienna quarkonium workshop last week
 - First measurement of the X(3872) / ψ' [cross-section x BR] ratio at 7 TeV

• Separation of χ_{c1} / χ_{c2} states using the J/ $\psi \gamma$ ($\gamma \rightarrow e^+e^-$) final state using a novel tracker-based method to reconstruct very low energy conversions

Conclusion and prospects

- Several production cross-section and related measurements in the field of heavy-flavor physics have already been released by CMS on the 2010 dataset (≤ 40 pb⁻¹), in a large phase space that complements LHCb measurements
 - proving detector excellence in trigger capabilities, tracking and muon reconstruction
 - discriminating between QCD models (both in perturbative and NR regimes) and their implementation in MC generators
- Next steps are high-statistics measurements, including:
 - Quarkonium polarization
 - Neutral-B (B^o, B_s) CP violation and rare decays
 - Keeping up the pace with LHCb results is a challenge
 - Low p_T reach not competitive, but no luminosity leveling in CMS
 - Smart triggering techniques are the essential ingredient