Discovering heavy colored vectors at the LHC

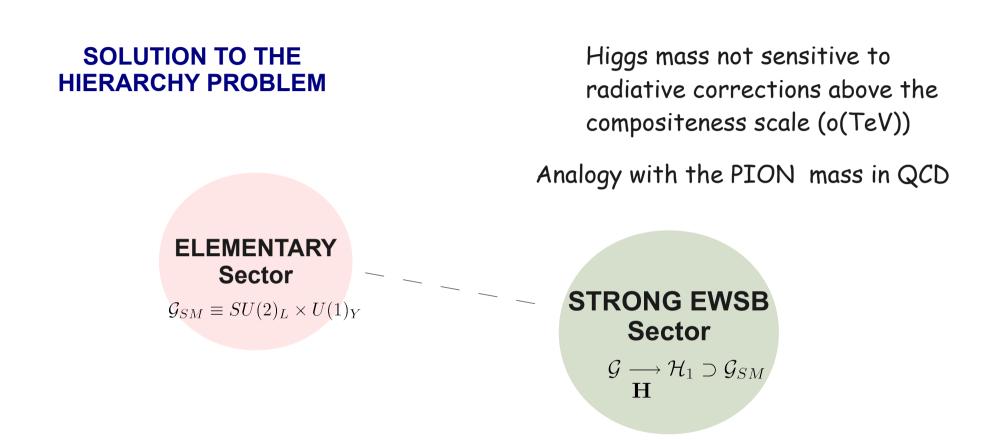
Natascia Vignaroli

SAPIENZA Università di Roma & INFN

IFAE 2011, Perugia

Work in progress with Roberto Contino

Composite Higgs from a New Strong dynamics



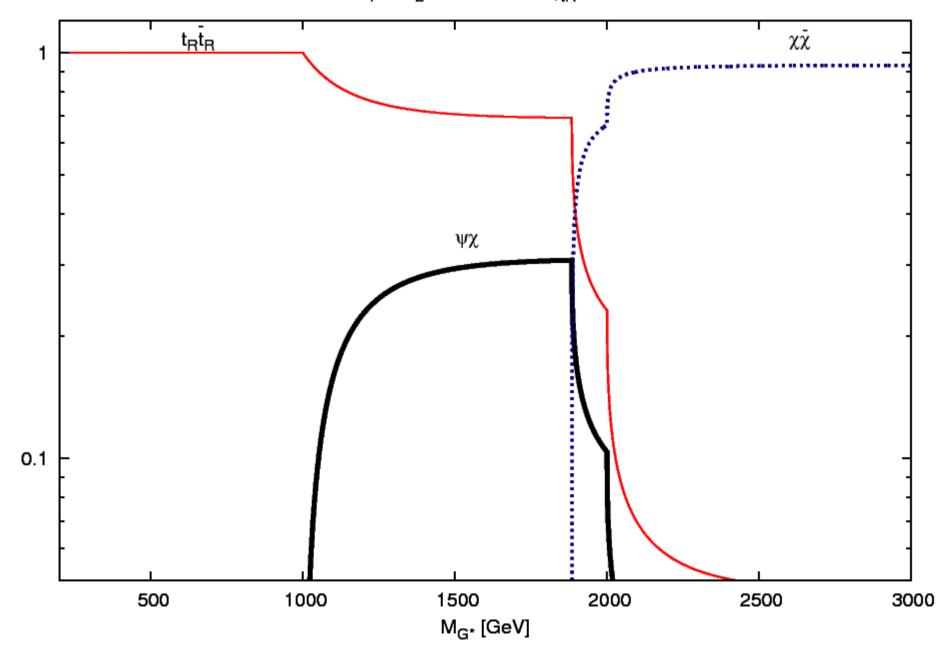
elementary/composite \rightarrow light (SM) / heavy (NP) t, b, g, ... / T, B, G*, ... Heavier particles have larger degrees of compositeness

AdS/CFT

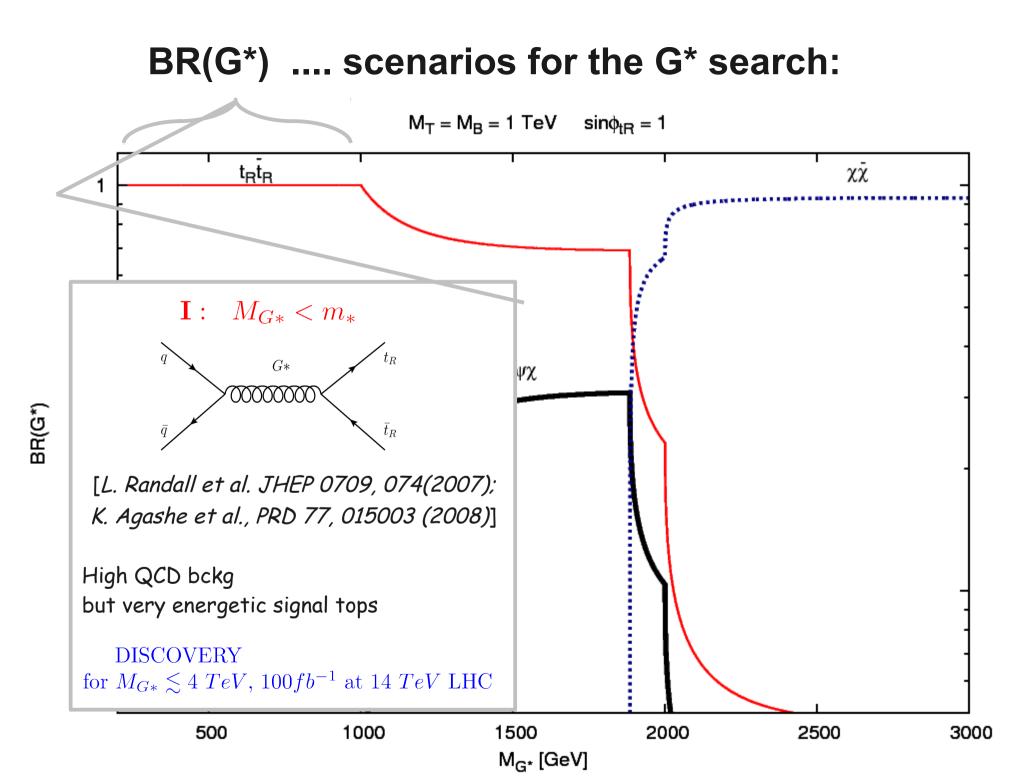
RS warped extra dimension

BR(G^{*}) scenarios for the G^{*} search:

 $M_T = M_B = 1 \text{ TeV} \text{ sin} \phi_{tR} = 1$

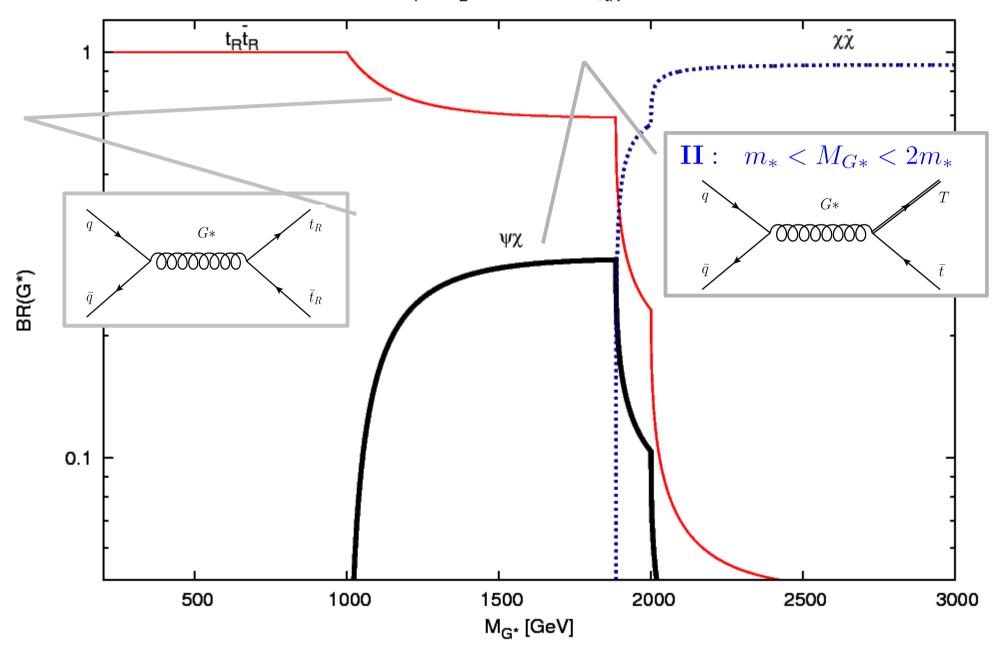


BR(G*)



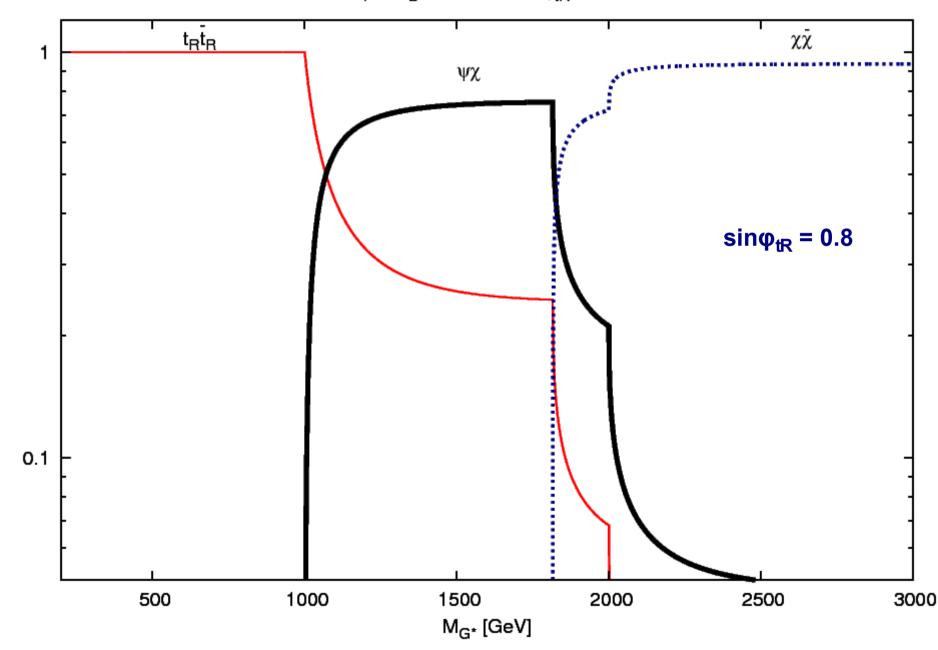
BR(G^{*}) scenarios for the G^{*} search:

 $M_T = M_B = 1 \text{ TeV} \text{ sin} \phi_{tR} = 1$



BR(G*)scenarios for the G* search:

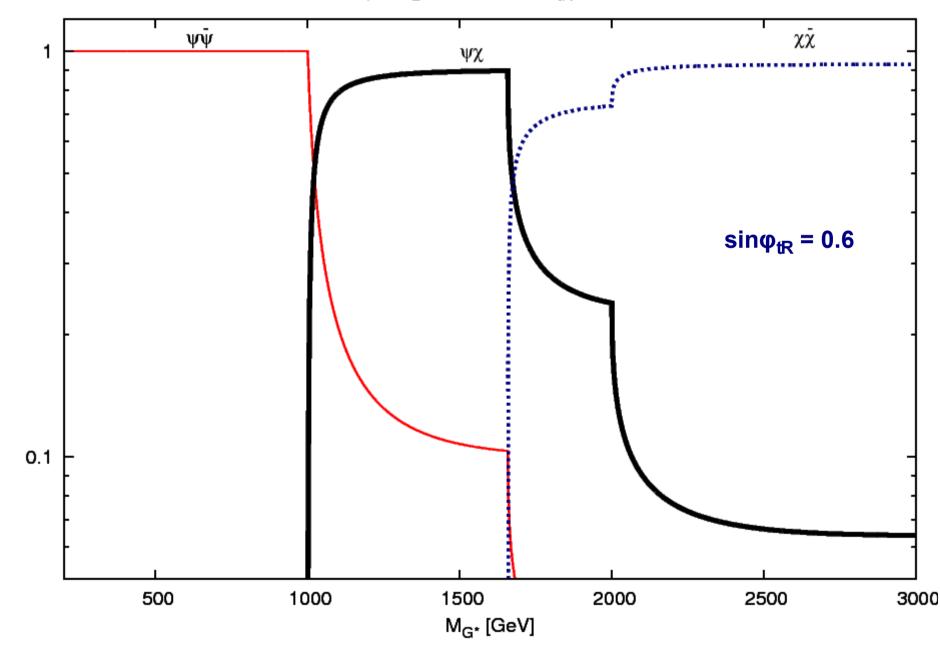
 $M_T = M_B = 1 \text{ TeV} \text{ sin}\phi_{tR} = 0.8$



BR(G*)

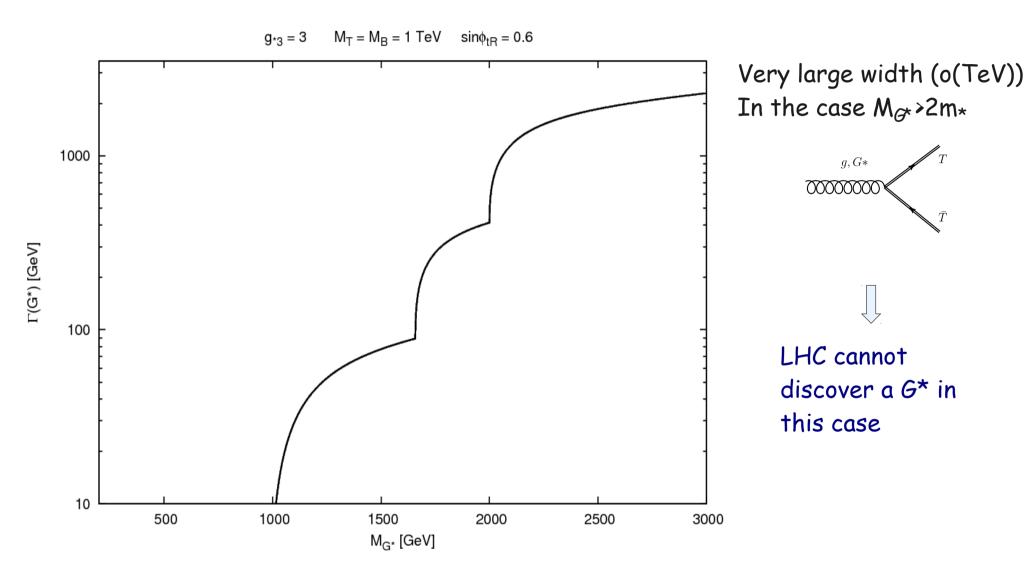
BR(G*)scenarios for the G* search:

 $M_T = M_B = 1 \text{ TeV} \text{ sin}\phi_{tR} = 0.6$



BR(G*)

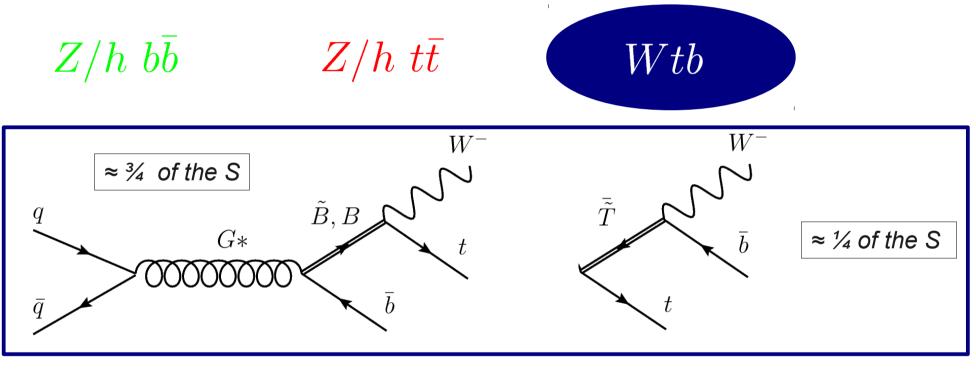
G* widthscenarios for the **G*** search:



G* search in the Ψ_{χ} channel

• SEARCH CHANNELS

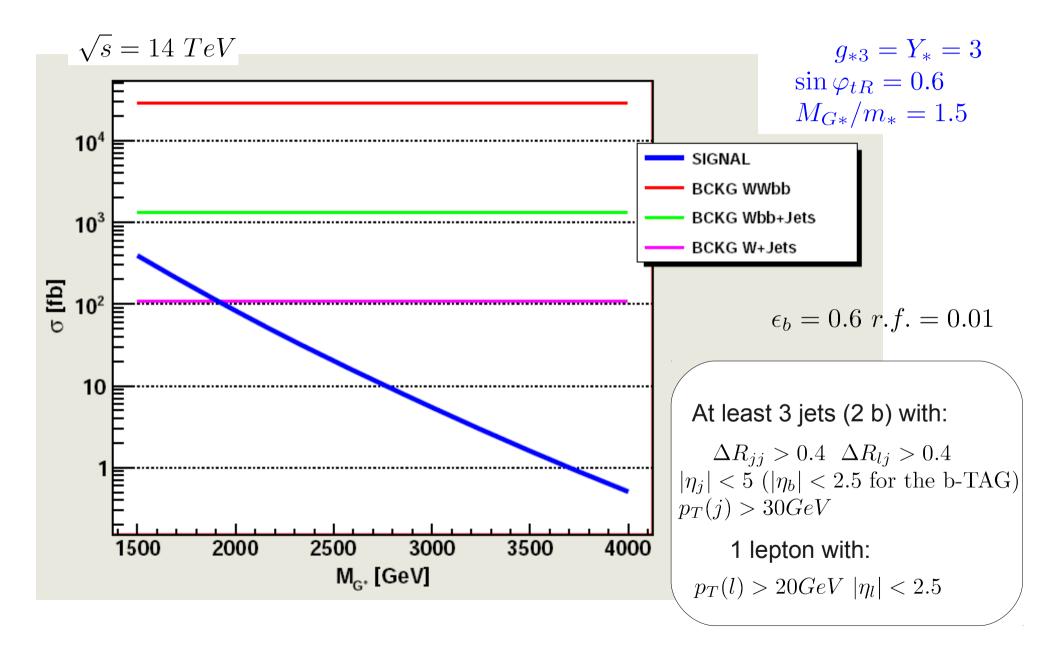
(heavy fermions decay into longitudinal weak bosons or into the Higgs)



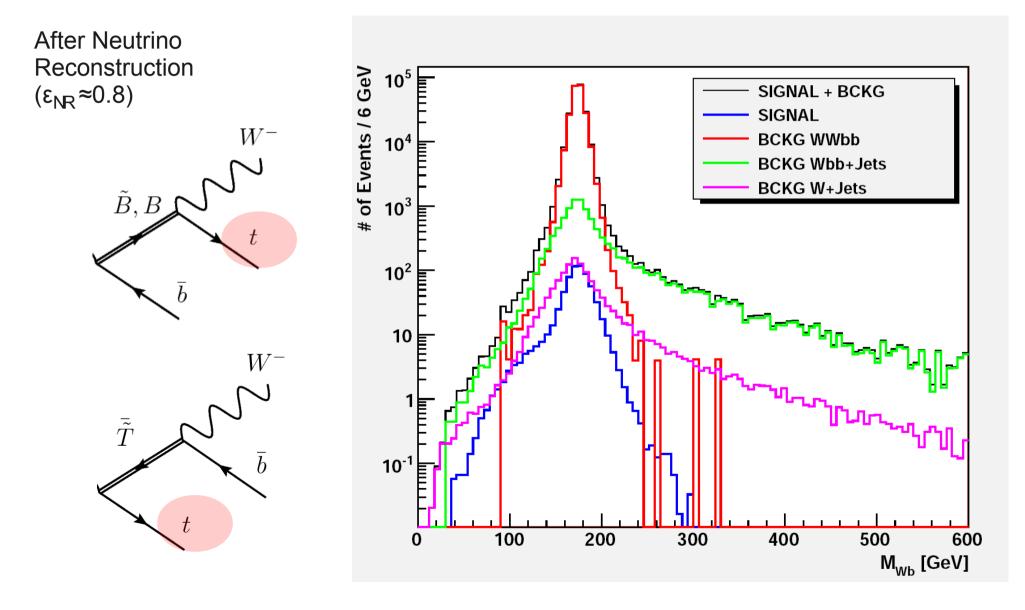
We fix
$$\frac{M_{G*}}{m_*} = 1.5$$

And we look for G* (and heavy fermions) Signal in the $~W(\to l \nu) W(\to j j) b \overline{b}$ channel

S and Bckg Cross sections after Acceptance Cuts and b-TAG



Top Reconstruction

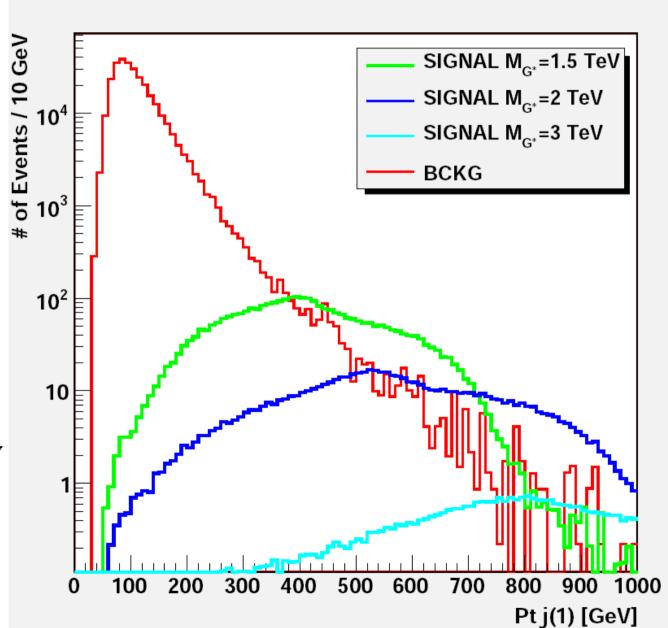


Conservative Cuts

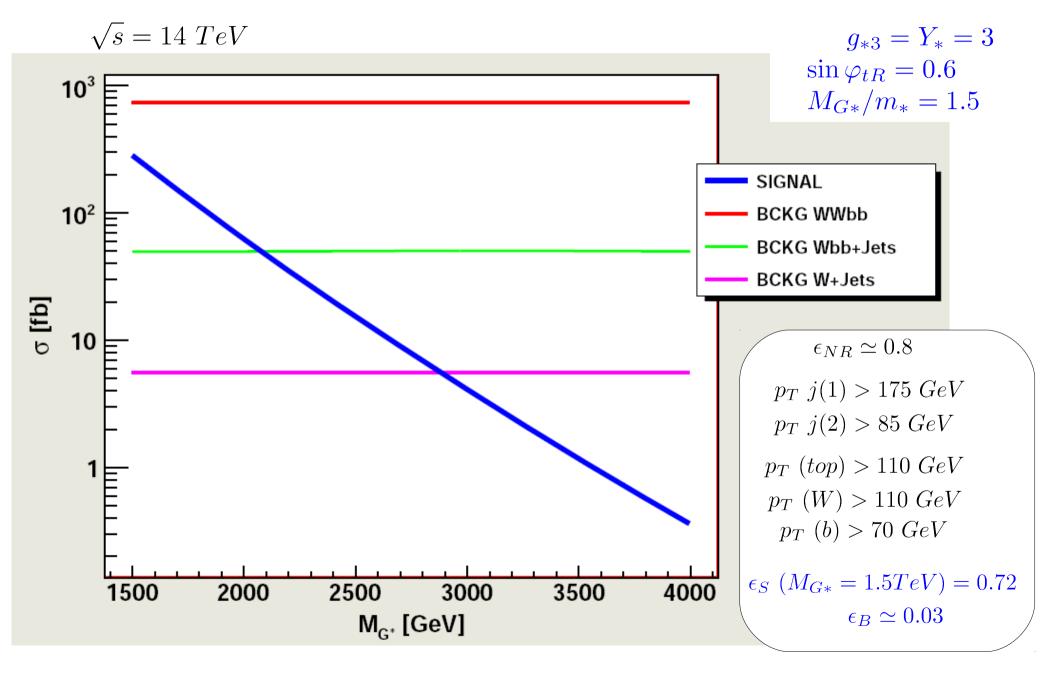
Very energetic final states for the Signal

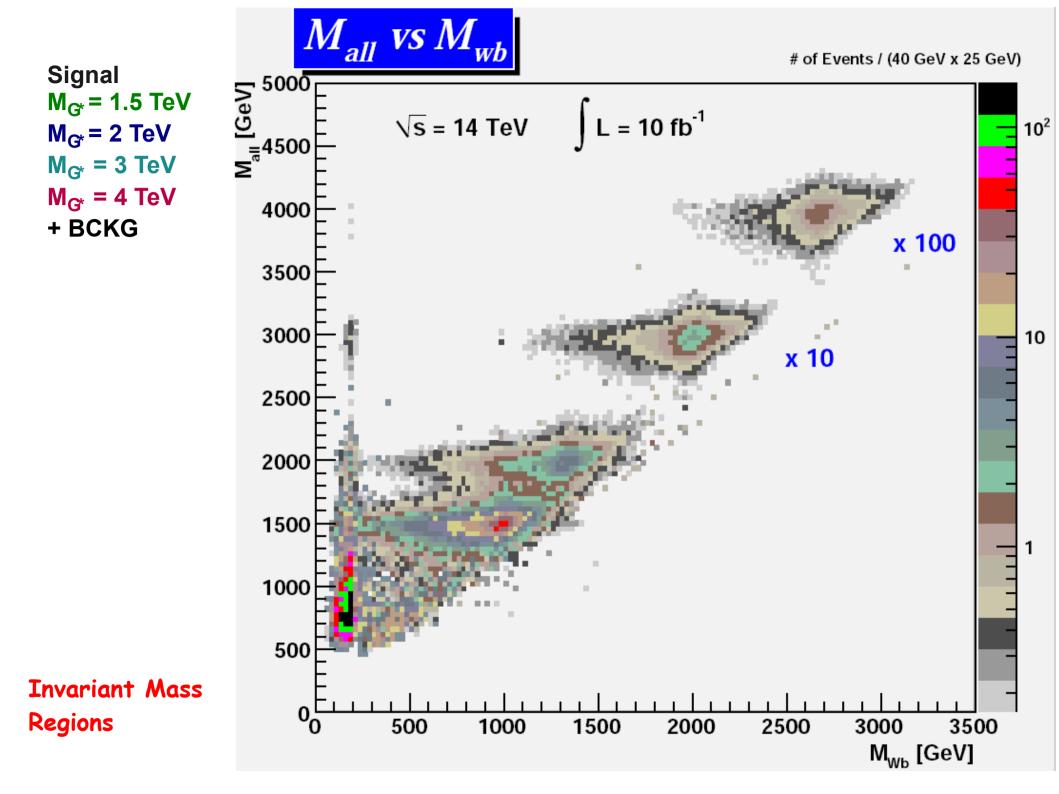
We apply cuts that reject less than 3% of the Signal (corresponding to M_{G^*} =1.5 TeV, which is the 'less energetic' case)

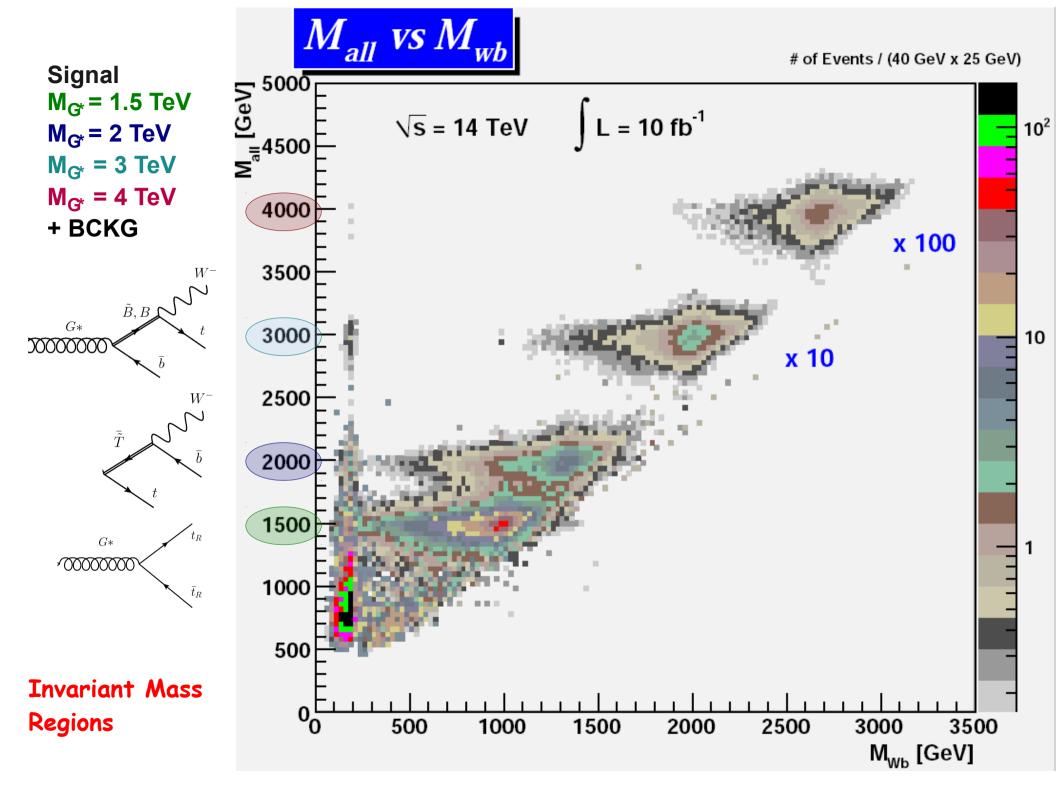
 $p_T \ j(1) > 175 \ GeV$ $\epsilon_S \ (M_{G*} = 1.5TeV) = 0.97$ $\epsilon_B = 0.08$

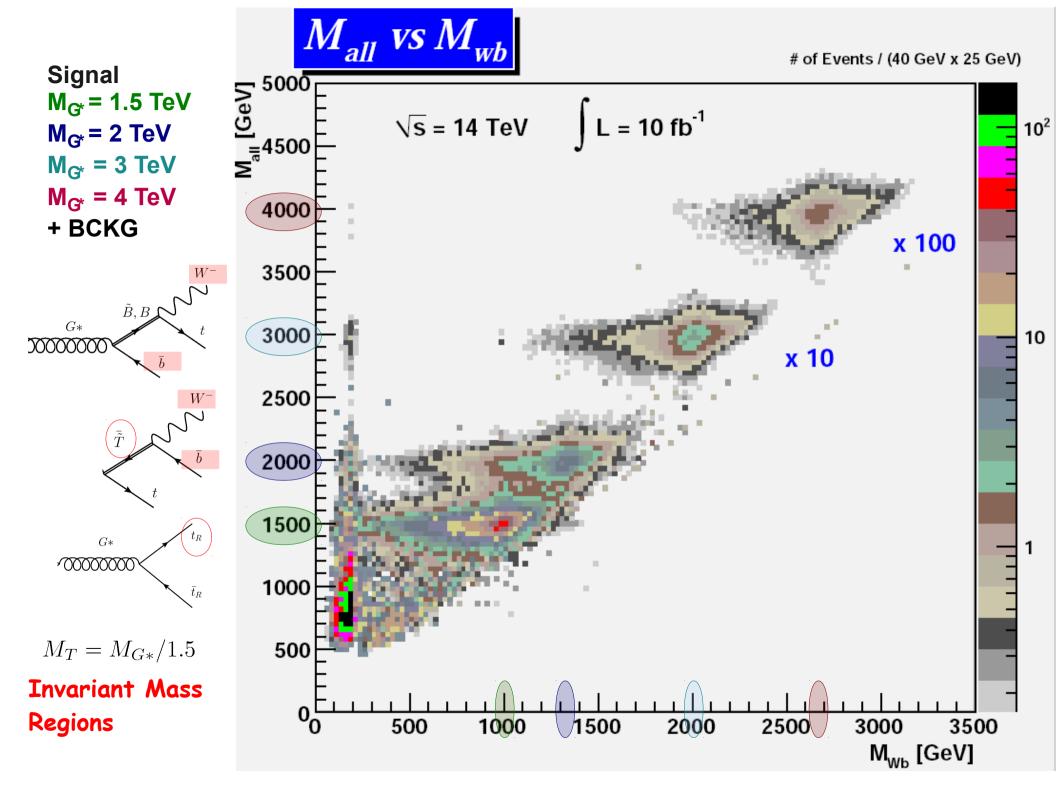


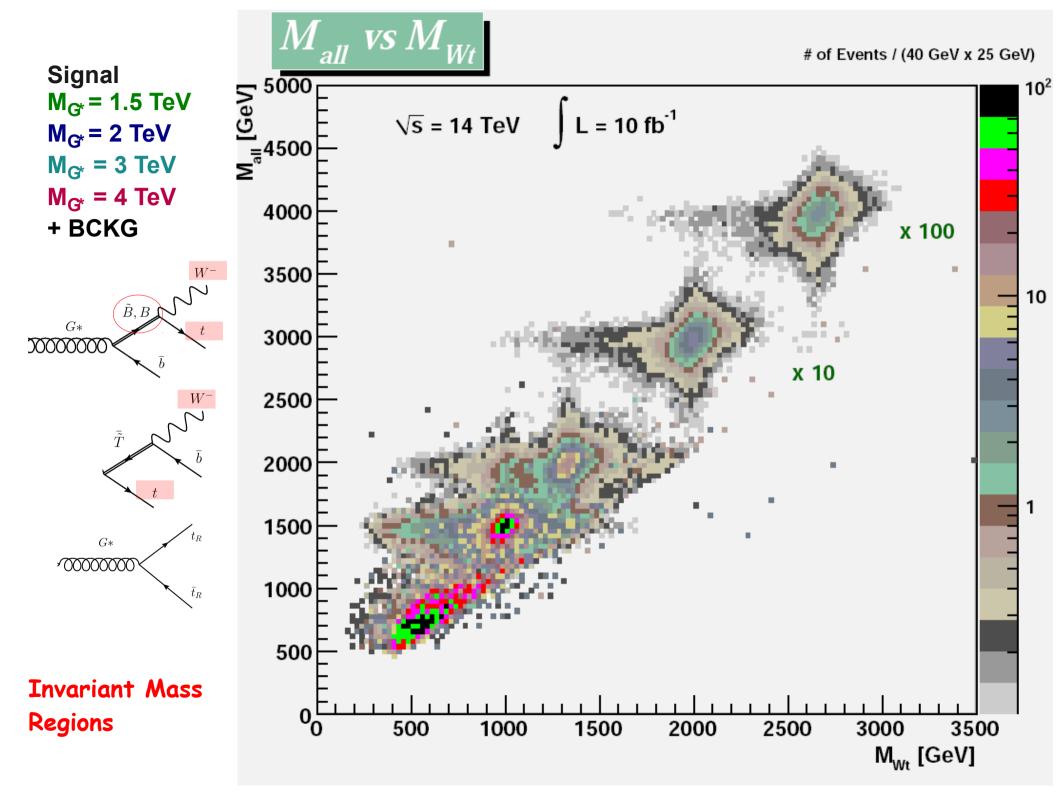
S and Bckg Cross sections after Neutrino and Top Reconstruction and the Pt Cuts

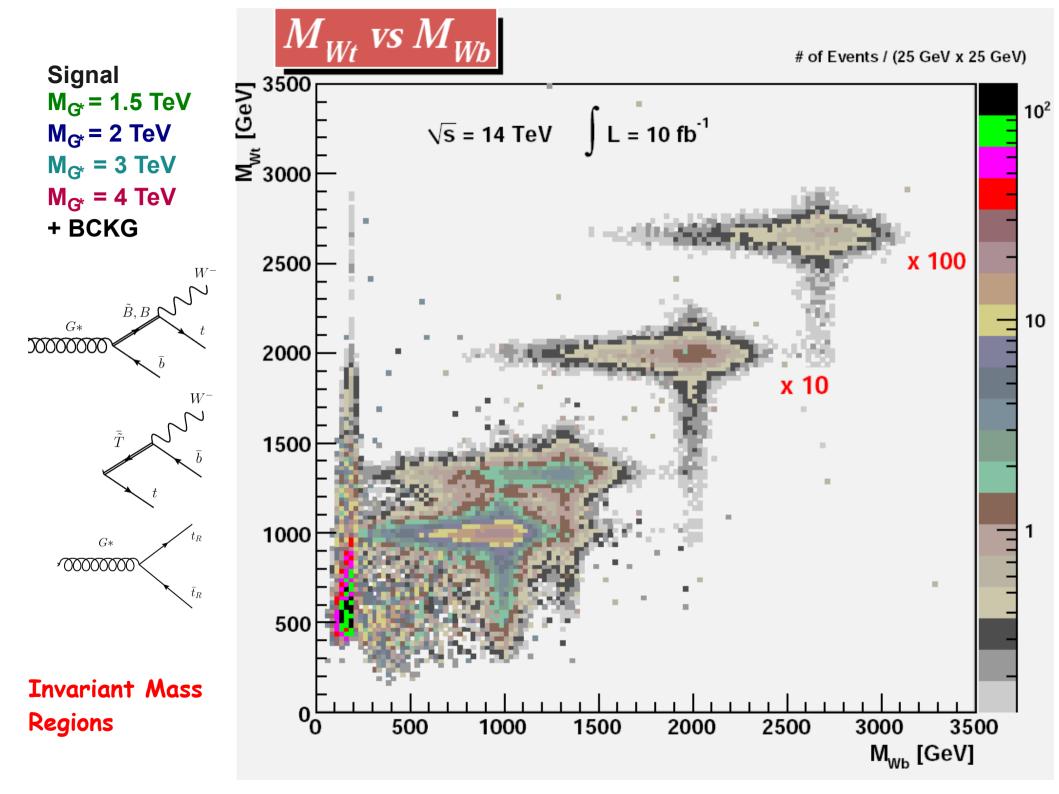


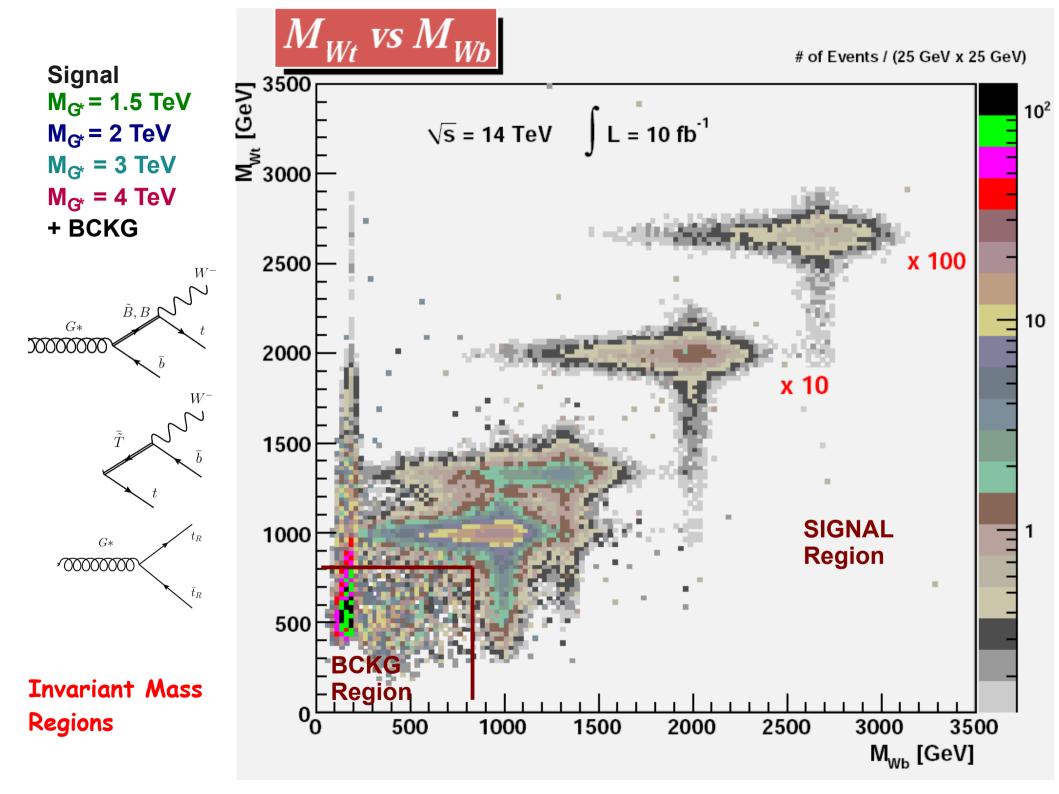






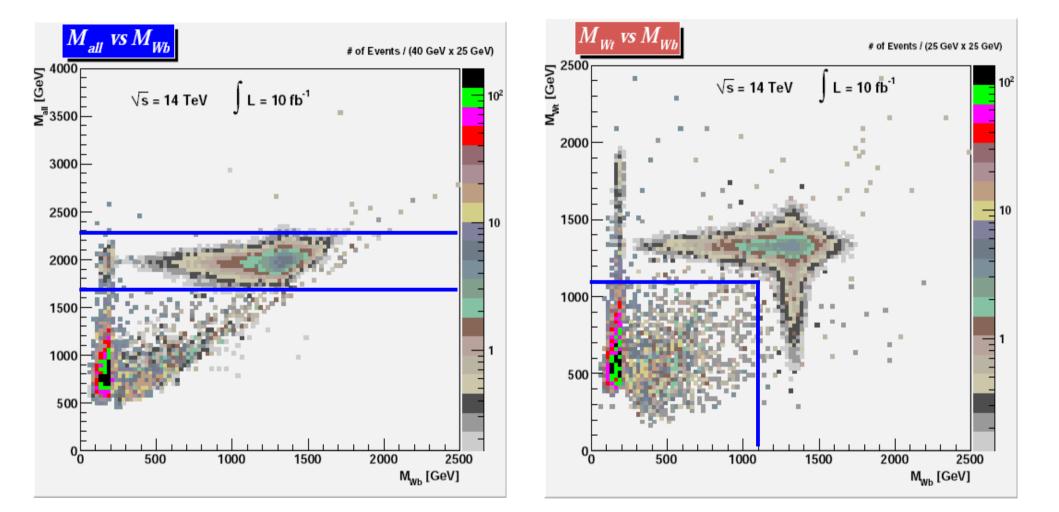


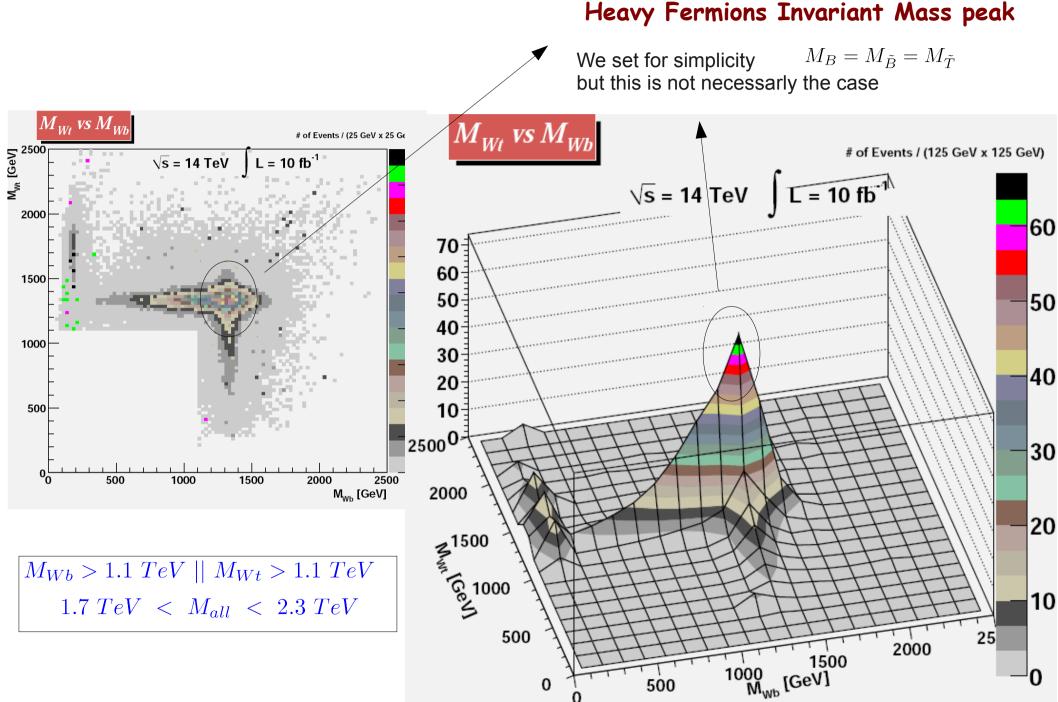


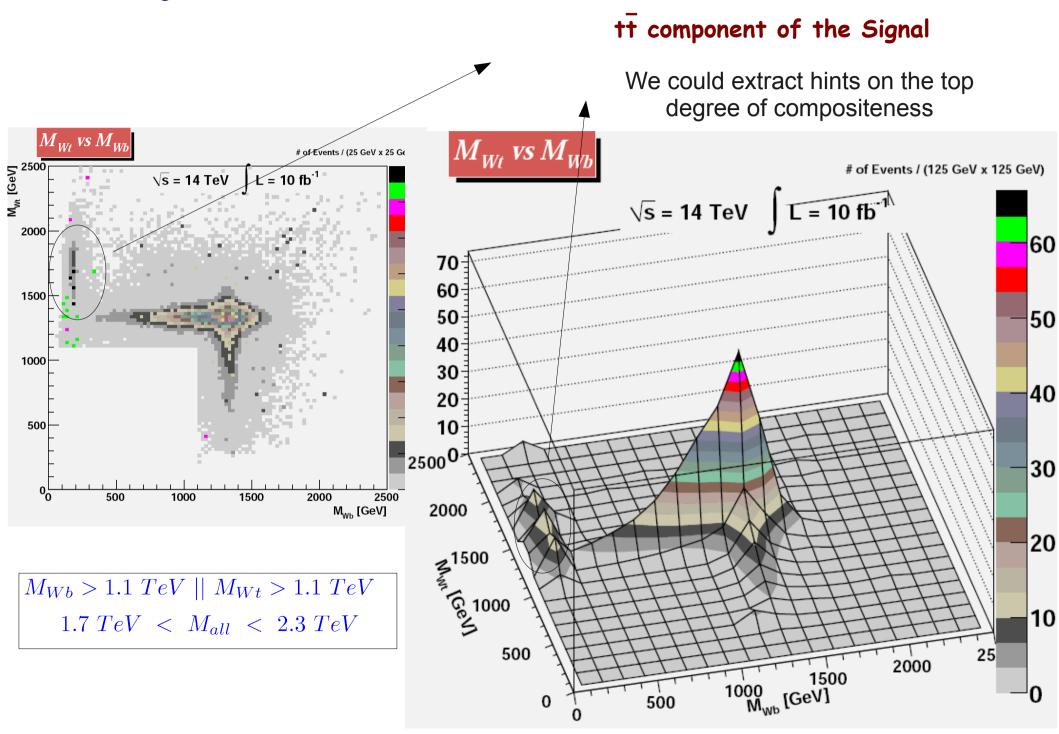


Signal M_{G*} = 2 TeV + BCKG

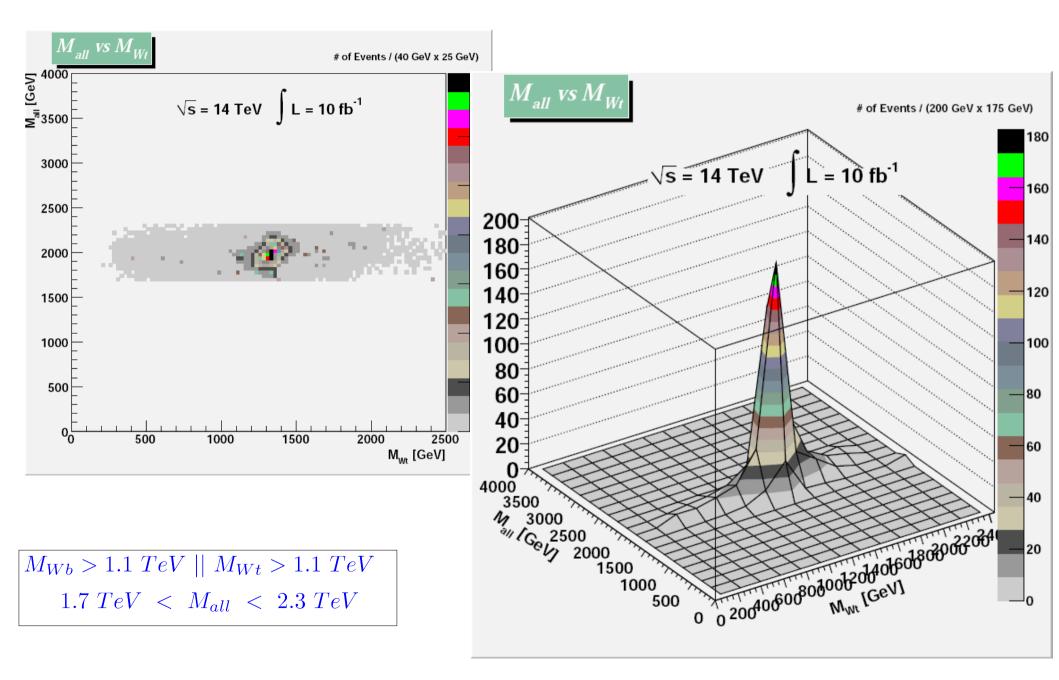
$M_{Wb} > 1.1 \ TeV \mid\mid M_{Wt} > 1.1 \ TeV$ $1.7 \ TeV < M_{all} < 2.3 \ TeV$



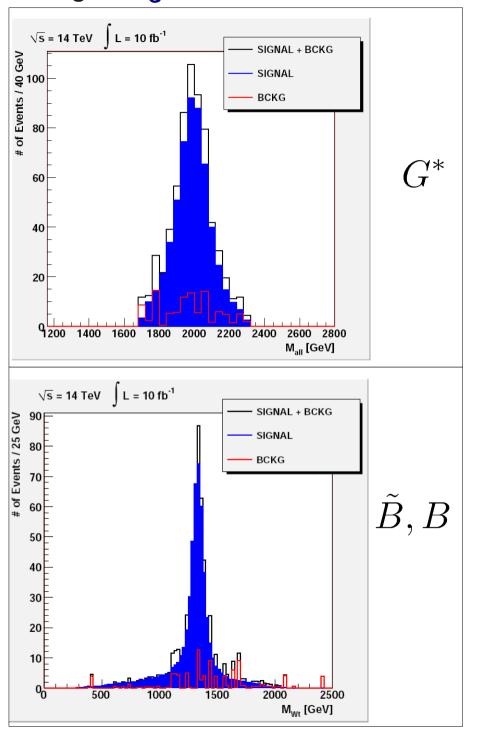




tt component of the Signal We could extract hints on the top M_{all} vs M_{Wb} degree of compositeness # of Events / (40 GeV x 25 GeV) [∧ə 9] [™]3500 $\sqrt{s} = 14 \text{ TeV} \qquad L = 10 \text{ fb}^{-1}$ M_{all} vs M_{Wb} # of Events / (200 GeV x 175 GeV) ้√s = 14 TeV L = 10 fb⁻¹ 0' M_{wb} [GeV] 0 20040000809000200406008020000 *M_{Wb} [GeV]* 2000 J $M_{Wb} > 1.1 \ TeV \parallel M_{Wt} > 1.1 \ TeV$ 1000 N all $1.7 \ TeV < M_{all} < 2.3 \ TeV$



Signal M_{G*} = 2 TeV vs BCKG After ALL Cuts

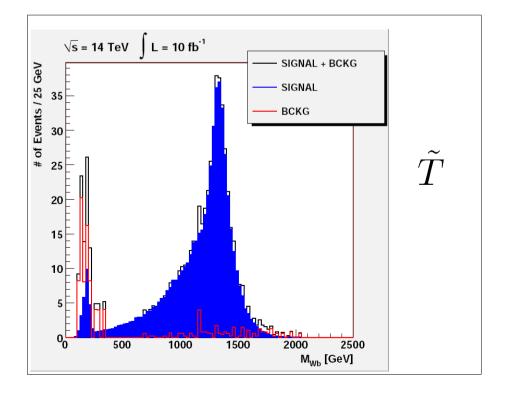


 $M_{Wb} > 1.1 \ TeV \mid\mid M_{Wt} > 1.1 \ TeV$ $1.7 \ TeV < M_{all} < 2.3 \ TeV$

 $S/\sqrt{B} > 5$ and at least 10 Signal Events:

$$\int \mathcal{L} \simeq 180 \ pb^{-1}$$

$$S = 10 \ S/B \simeq 5 \ S/\sqrt{B} \simeq 7.3$$



14 TeV LHC Discovery Reach on G* and Heavy Fermions

S/JB > 5 and at least 10 Signal Events:

M _{G*} = 1.5 TeV		
$\int \mathcal{L} \simeq 41 \ pb^{-1}$	$S/B \simeq 6 \ S/\sqrt{B} \simeq 8$	$M_{Wb} > 0.8 \ TeV \mid\mid M_{Wt} > 0.8 \ TeV$ $1.3 \ TeV < M_{all} < 1.7 \ TeV$
M _{G*} = 2 TeV		
$\int \mathcal{L} \simeq 180 \ pb^{-1}$	$S/B\simeq 5~S/\sqrt{B}\simeq 7.3$	$M_{Wb} > 1.1 \ TeV \mid\mid M_{Wt} > 1.1 \ TeV$ $1.7 \ TeV < M_{all} < 2.3 \ TeV$
M _{G*} = 3 TeV		
$\int \mathcal{L} \simeq 3 \ f b^{-1}$	$S/B\simeq 8~S/\sqrt{B}\simeq 9$	$M_{all} > 2.7 \; TeV \; M_{Wt} > 1.4 \; TeV$
M _{G*} = 4 TeV		
$\int \mathcal{L} \simeq 38 \ f b^{-1}$	$S/B \simeq 4 \ S/\sqrt{B} \simeq 6.4$	$M_{all} > 3.6 \ TeV \ M_{Wt} > 2.1 \ TeV$

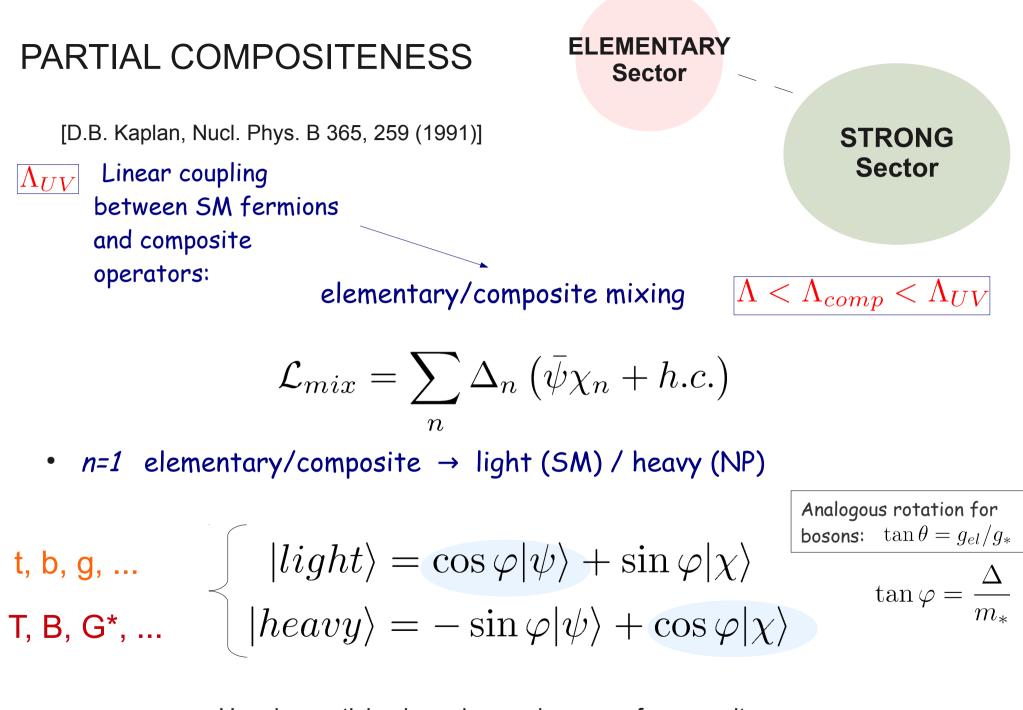
Conclusions

- G* phenomenology strongly depends on the ratio M_{G^*}/m_*
- The case where M_{G^*} <m* is the only one studied in the literature on the G* search at the LHC but it does not seem to be the preferred one by the hints from electroweak data and flavor observables (strong constraint on G* mass from KK mixing)
- If M_{G^*} >m* (but not M_{G^*} >2m*)

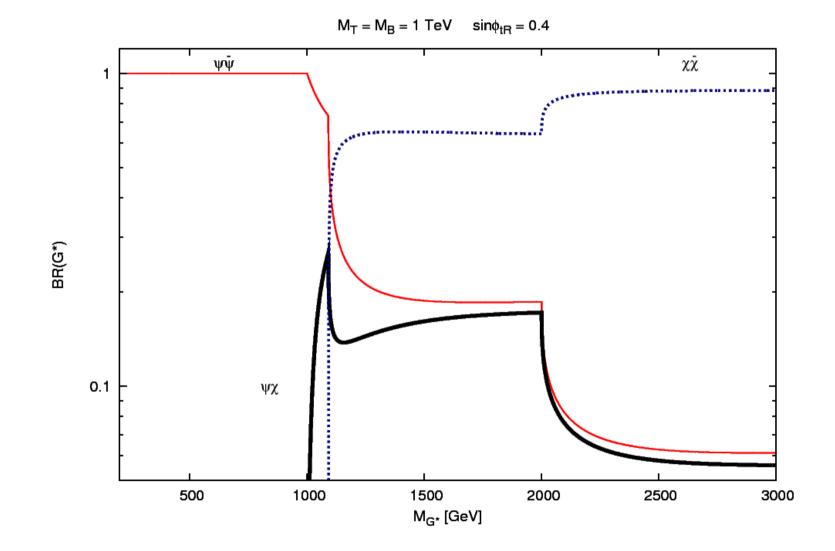
the search in the Ψ_X channel is very promising for both the G* and the heavy fermions search.

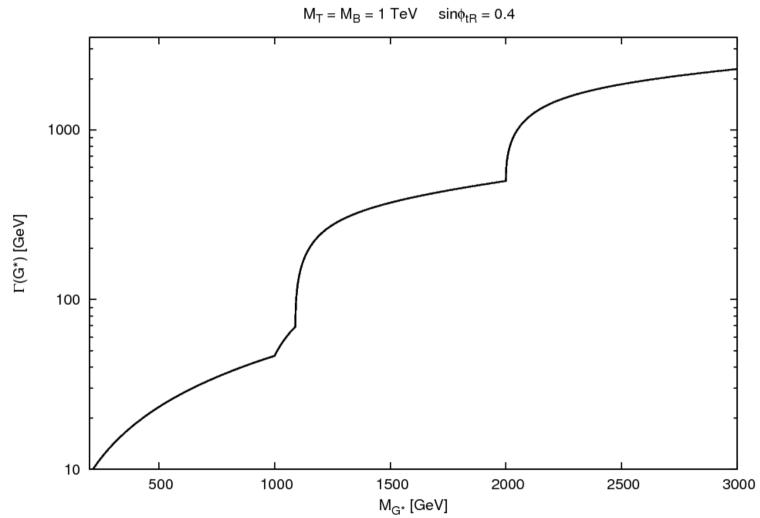
It can also be important to extract hints on model parameters (as the top degree of compositeness)

Extra Slides

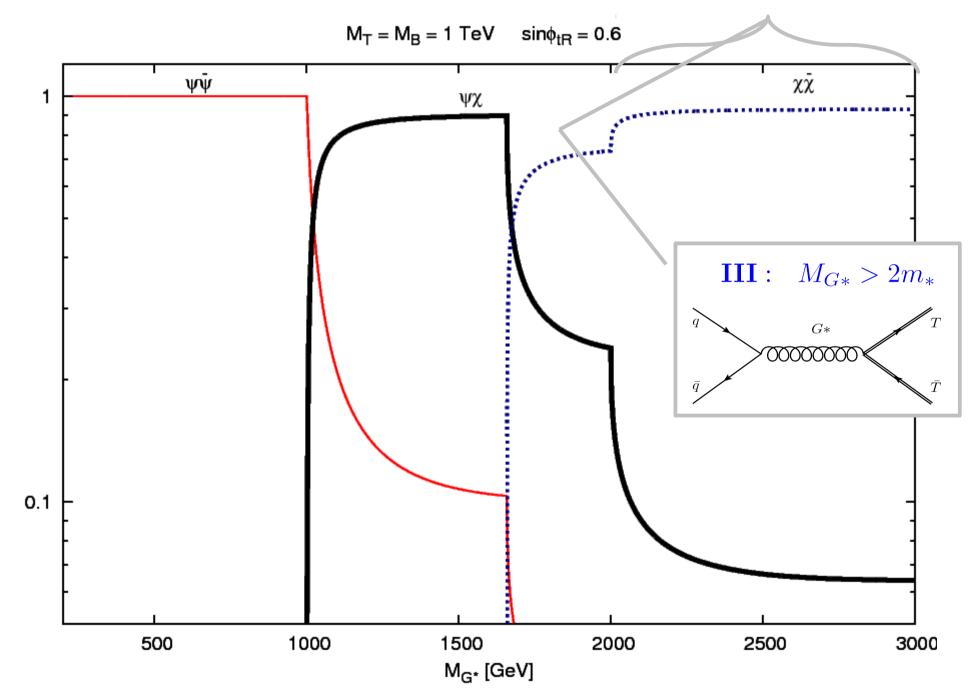


Heavier particles have larger degrees of compositeness



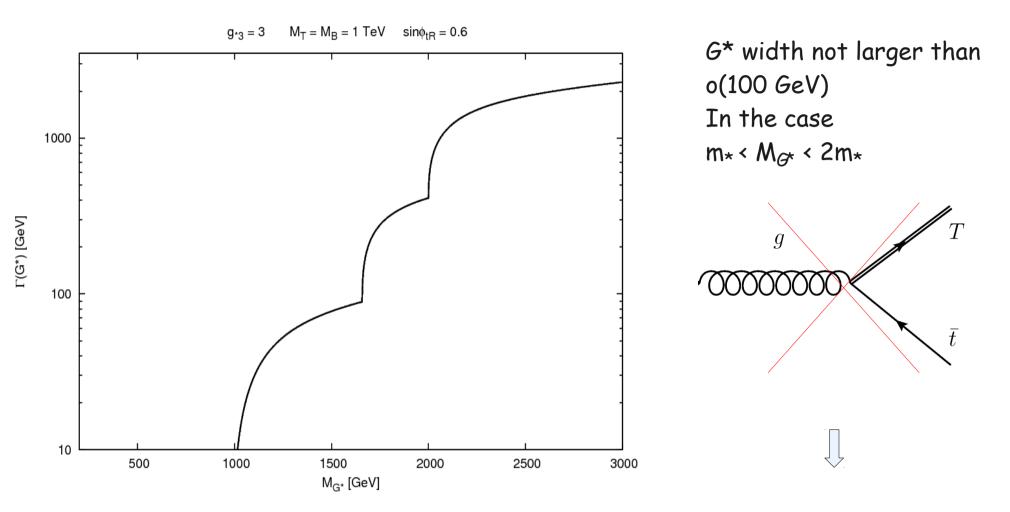


BR(G^{*})three scenarios for the G^{*} search:



BR(G*)

G* width



Anyway the G* discover through the Ψ_X channel could be still possible also in the case of larger G* width ,because of the presence of heavy fermions (with quite narrow width) only in the signal

DeltaRjj>0,7

SR=0,6 MG*=1,5 TeV

2j+2b	11,6%		
1j+2b	49%	1Mj+2b	42%
1j+1b	19%		

SR=0,6

MG*=2 TeV

2j+2b	6%		
1j+2b	49%	1Mj+2b	45%
1j+1b	27%		

SR=0,6

MG*=3 TeV

2j+2b	2,7%		
1j+2b	47%	1Mj+2b	45%
1j+1b	37%		

DeltaRjj>0,4

SR=0,6 MG*=1,5 TeV

2j+2b	45%		
1j+2b	34%	1Mj+2b	21%
1j+1b	6%		

SR=0,6 MG*=2 TeV

2j+2b	31%		
1j+2b	45%	1Mj+2b	36%
1j+1b	9,1%		

SR=0,6 MG*=3 TeV

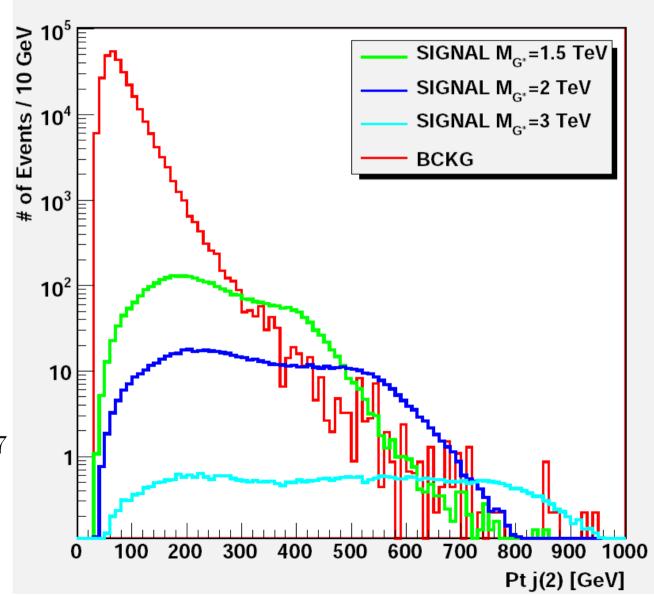
2j+2b	14%		
1j+2b	53%	1Mj+2b	49%
1j+1b	17%		

Conservative Cuts

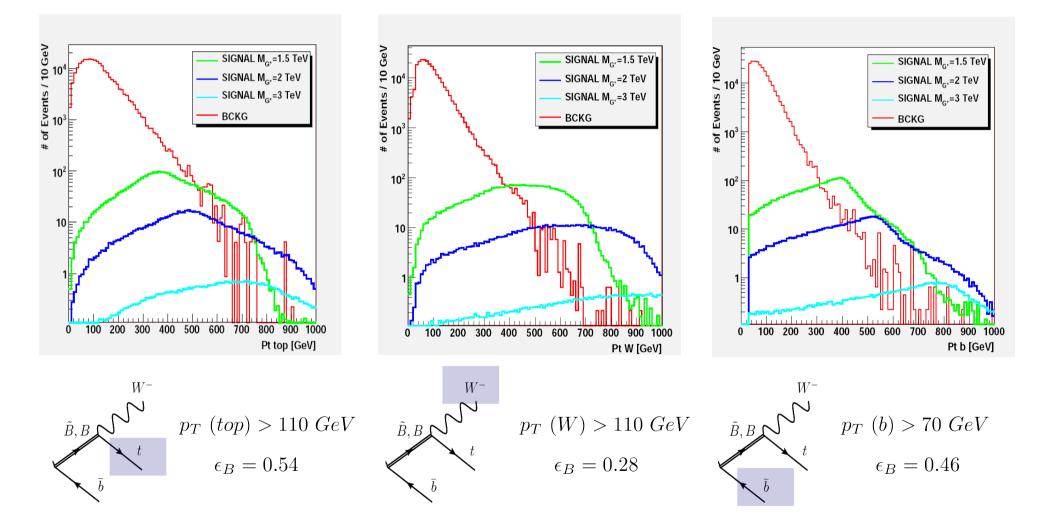
• Very energetic final states for the Signal

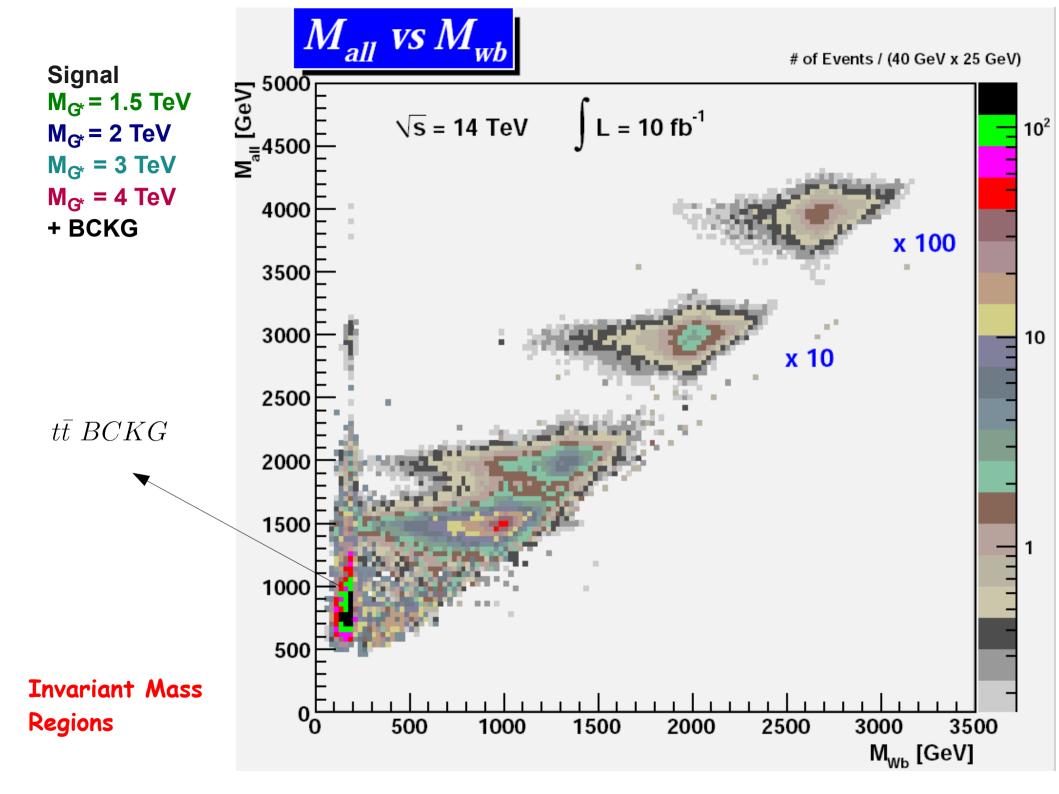
• We apply cuts that reject less than 3% of the Signal (corresponding to M_{G^*} =1.5 TeV, which is the 'less energetic' case)

 $p_T \ j(2) > 85 \ GeV$ $\epsilon_S \ (M_{G*} = 1.5TeV) = 0.97$ $\epsilon_B = 0.32$



Conservative Cuts





$$SO(5)xU(1)_x \rightarrow SO(4)xU(1)_x$$

TS-5

$$\mathcal{Q}_{2/3} = \begin{bmatrix} T & T_{5/3} \\ B & T_{2/3} \end{bmatrix} = (2,2)_{2/3}, \ \tilde{T} = (1,1)_{2/3}$$
$$\mathcal{H} = (2,2)_0$$
$$\mathcal{Q}'_{-1/3} = \begin{bmatrix} B_{-1/3} & T' \\ B_{-4/3} & B' \end{bmatrix} = (2,2)_{-1/3}, \ \tilde{B} = (1,1)_{-1/3}$$

• $\mathcal{L}_{mix} = -\Delta_{L1}\bar{q}_L(T,B) - \Delta_{R1}\bar{t}_R\tilde{T} - \Delta_{L2}\bar{q}_L(T',B') - \Delta_{R2}\bar{b}_R\tilde{B} + h.c.$

•
$$\Delta_{L2} \ll \Delta_{L1}$$
 $m_b = \frac{v}{\sqrt{2}} Y_{*D} s_2 s_{bR} \quad m_t = \frac{v}{\sqrt{2}} Y_{*U} s_1 s_R , \quad s_2 = \frac{\Delta_{L2}}{M_{Q'}} c_1$

$$b_L \ P_{LR} \text{ eigenstate for } \Delta_{L2} = 0 \ (T_{3L}(B) = T_{3R}(B), \ T_{3L}(B') \neq T_{3R}(B'))$$

$$\delta g_{Lb} \sim \frac{1}{2} \frac{m_t^2}{M_Q^2 s_R^2} \left[s_2^2 + \frac{M_Z^2}{M_Q^2} \right]$$

 t_R and $b_R P_C$ eigenstates

$$SO(5)xU(1)x \rightarrow SO(4)xU(1)x$$

TS-5

$$\mathcal{Q}_{2/3} = \begin{bmatrix} T & T_{5/3} \\ B & T_{2/3} \end{bmatrix} = (2,2)_{2/3}, \ \tilde{T} = (1,1)_{2/3}$$
$$\mathcal{H} = (2,2)_0$$
$$\mathcal{Q}'_{-1/3} = \begin{bmatrix} B_{-1/3} & T' \\ B_{-4/3} & B' \end{bmatrix} = (2,2)_{-1/3}, \ \tilde{B} = (1,1)_{-1/3}$$

• $\mathcal{L}_{mix} = -\Delta_{L1}\bar{q}_L(T,B) - \Delta_{R1}\bar{t}_R\tilde{T} - \Delta_{L2}\bar{q}_L(T',B') - \Delta_{R2}\bar{b}_R\tilde{B} + h.c.$

•
$$\Delta_{L2} \ll \Delta_{L1}$$
 $m_b = \frac{v}{\sqrt{2}} Y_{*D} s_2 s_{bR} \quad m_t = \frac{v}{\sqrt{2}} Y_{*U} s_1 s_R , \quad s_2 = \frac{\Delta_{L2}}{M_{Q'}} c_1$

 $m_b \ll m_t$ do not require an almost fully elementary b_R

$$SO(5)xU(1)_x \rightarrow SO(4)xU(1)_x$$
TS-10

$$Q_{2/3} = \begin{bmatrix} T & T_{5/3} \\ B & T_{2/3} \end{bmatrix} = (2,2)_{2/3}$$

$$\tilde{\mathcal{Q}}_{2/3} = \begin{pmatrix} \tilde{T}_{5/3} \\ \tilde{T} \\ \tilde{B} \end{pmatrix} = (1,3)_{2/3} , \ \mathcal{Q'}_{2/3} = \begin{pmatrix} T'_{5/3} \\ T' \\ B' \end{pmatrix} = (3,1)_{2/3}$$

$$\mathcal{L}_{mix} = -\Delta_{L1}\bar{q}_L(T,B) - \Delta_{R1}\bar{t}_R\tilde{T} - \Delta_{R2}\bar{b}_R\tilde{B} + h.c.$$

$$m_t = \frac{v}{\sqrt{2}} Y_* s_1 s_R \quad m_b = \frac{v}{\sqrt{2}} Y_* s_1 s_{bR} , \quad s_1 = \frac{\Delta_{L1}}{M'_Q} \ s_R = \frac{\Delta_{R1}}{M_{\tilde{T}}} \ s_{bR} = \frac{\Delta_{R2}}{M_{\tilde{B}}}$$

$$b_L \ P_{LR} \ \text{eigenstate} \qquad \delta g_{Lb} \sim \frac{1}{2} \frac{m_t^2}{M_Q^2 s_R^2} \left[\frac{M_Z^2}{M_Q^2} \right] + o\left(\frac{m_b^2}{M_Q^2} \right)$$

 $t_R P_C$ eigenstate $(T_{3L} = T_{3R} = 0), b_R$ not $(T_{3R} \neq 0)$

$$SO(5)xU(1)_x \rightarrow SO(4)xU(1)_x$$
TS-10

 \sim

$$Q_{2/3} = \begin{bmatrix} T & T_{5/3} \\ B & T_{2/3} \end{bmatrix} = (2,2)_{2/3}$$

$$\tilde{\mathcal{Q}}_{2/3} = \begin{pmatrix} T_{5/3} \\ \tilde{T} \\ \tilde{B} \end{pmatrix} = (1,3)_{2/3} , \ \mathcal{Q'}_{2/3} = \begin{pmatrix} T'_{5/3} \\ T' \\ B' \end{pmatrix} = (3,1)_{2/3}$$

$$\mathcal{L}_{mix} = -\Delta_{L1}\bar{q}_L(T,B) - \Delta_{R1}\bar{t}_R\tilde{T} - \Delta_{R2}\bar{b}_R\tilde{B} + h.c.$$

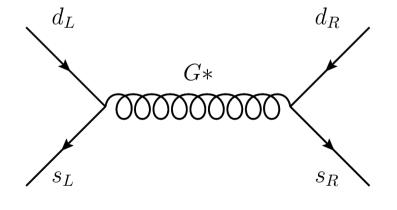
$$m_t = \frac{v}{\sqrt{2}} Y_* s_1 s_R \quad m_b = \frac{v}{\sqrt{2}} Y_* s_1 s_{bR} , \quad s_1 = \frac{\Delta_{L1}}{M'_Q} \ s_R = \frac{\Delta_{R1}}{M_{\tilde{T}}} \ s_{bR} = \frac{\Delta_{R2}}{M_{\tilde{B}}}$$

$$m_b \ll m_t \longrightarrow s_{bR} \ll s_R$$

 b_R almost fully elementary

M_{G*}/m_* ?? ...what from data?

- $\mathbf{m}_* \gtrsim 1 \ TeV$ MFV bound from $b \to s\gamma$ [$\mathbf{m}_* \lesssim (3 \div 4) \ TeV$ (naturalness)] $f.t. \approx 1\%$
- $\mathbf{M}_{\mathbf{G}*} \gtrsim 11 \left(\frac{g_{*3}}{Y_*}\right) TeV$ [NMFV bound from ϵ_K] [in the TS-5: $\mathbf{M}_{\mathbf{G}*} \gtrsim \frac{s_1}{s_2} \ 11 \left(\frac{g_{*3}}{Y_*}\right) TeV$]



$$\mathcal{O}_4 = ar{d}_R^lpha s_L^lpha ar{d}_L^eta s_R^eta$$

Contribution from the mixing via 3^{rd} generation:

$$\mathcal{C}_4 \sim \frac{g_{*3}^2}{M_{G*}^2} (D_L^{\dagger})_{13} (D_L)_{23} s_1^2 (D_R)_{23} (D_R^{\dagger})_{13} s_{bR}^2$$
$$\sim s_1^2 s_{bR}^2 \frac{g_{*3}^2}{M_{G*}^2} \frac{m_s m_d}{m_b^2}$$

M_{G*}/m_* ?? ...what from data?

- $\mathbf{m}_* \gtrsim 1 \ TeV$ MFV bound from $b \to s\gamma$ [$\mathbf{m}_* \lesssim (3 \div 4) \ TeV$ (naturalness)] $f.t. \approx 1\%$
- $\mathbf{M}_{\mathbf{G}*} \gtrsim 11 \left(\frac{g_{*3}}{Y_*}\right) TeV$ [NMFV bound from ϵ_K] [in the TS-5: $\mathbf{M}_{\mathbf{G}*} \gtrsim \frac{s_1}{s_2} 11 \left(\frac{g_{*3}}{Y_*}\right) TeV$]

$$\mathcal{O}_{4} = \bar{d}_{R}^{\alpha} s_{L}^{\alpha} \bar{d}_{L}^{\beta} s_{R}^{\beta}$$
Bound evaluated with the **assumptions**:

$$s_{L}$$

$$\mathcal{O}_{4} = \bar{d}_{R}^{\alpha} s_{L}^{\alpha} \bar{d}_{L}^{\beta} s_{R}^{\beta}$$
Bound evaluated with the **assumptions**:

$$\bullet \text{ Anarchical } Y_{*}$$

$$\bullet (D_{L,R})_{ij} \sim \frac{(s_{L,R})_{i}}{(s_{L,R})_{j}} \quad D_{L}^{\dagger} D_{L} = U_{L}^{\dagger} D_{L} \equiv V_{CKM}$$